Advertisement

Patient-specific biokinetics and hybrid 2D/3D approach integration in OEDIPE software: Application to radioiodine therapy

  • M. Bensiali
    Affiliations
    Laboratoire d’Évaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France
    Search for articles by this author
  • N. Anizan
    Affiliations
    Gustave Roussy and Université Paris-Saclay, Medical Physics Department, Villejuif, France

    Gustave Roussy and Université Paris-Saclay, Nuclear Medicine Department, Villejuif, France
    Search for articles by this author
  • Author Footnotes
    1 Present address: Department of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland.
    S. Leboulleux
    Footnotes
    1 Present address: Department of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland.
    Affiliations
    Gustave Roussy and Université Paris-Saclay, Nuclear Medicine Department, Villejuif, France
    Search for articles by this author
  • S. Lamart
    Correspondence
    Corresponding author.
    Affiliations
    Laboratoire d’Évaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France
    Search for articles by this author
  • E. Davesne
    Affiliations
    Laboratoire d’Évaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France

    Laboratoire Radioprotection et Santé, Commissariat à l'Energie Atomique et aux Energies Alternatives, INSTN/UES/LRS, Gif-sur-Yvette, France
    Search for articles by this author
  • D. Broggio
    Affiliations
    Laboratoire d’Évaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France
    Search for articles by this author
  • A. Desbrée
    Affiliations
    Laboratoire d’Évaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France
    Search for articles by this author
  • D. Franck
    Affiliations
    Laboratoire d’Évaluation de la Dose Interne, Institut de Radioprotection et de Sûreté Nucléaire, IRSN/PSE-SANTE/SDOS/LEDI, Fontenay-aux-Roses, France
    Search for articles by this author
  • Author Footnotes
    1 Present address: Department of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Geneva University Hospitals, Geneva, Switzerland.
Published:November 21, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.09.013

      Highlights

      • Software for patient-specific biokinetics for radiopharmaceutical therapy.
      • Determination of biokinetics from multiple time-point hybrid imaging.
      • Count rate measurements provide useful data for derivation of biokinetics.
      • Clinical application of personalized estimation of lesion absorbed dose.

      Abstract

      Background

      The progression of targeted radionuclide therapy requires the development of dosimetry software accounting for patient-specific biokinetics. New functionalities were thus developed in the OEDIPE software, to deal with multiple 3D images or multiple planar images and a SPECT image.

      Materiel & method

      Methods were implemented to recover patient biokinetics in volumes of interest. If several 3D SPECT images are available, they are registered to a reference CT scan. When several planar images and a single SPECT are available, the planar images are registered to the SPECT and counts of the planar images converted to activity. To validate these developments, six SPECT/CT and planar images of a Jaszczak phantom containing I-131 were acquired at different dates. Cumulated activity was estimated in each sphere using the SPECT/CT images only or the planar series associated to one SPECT/CT. Biokinetics and doses in lesions and in the lungs of a patient treated with I-131 for differentiated thyroid cancer were then estimated using four planar images and a SPECT/CT scan. Whole-body retention data were used to compare the biokinetics obtained from the planar and SPECT data.

      Results

      Activities and cumulated activities estimated using OEDIPE in the phantom spheres agreed well with the reference values for both approaches. Results obtained for the patient compared well with those derived from whole-body retention data.

      Conclusion

      The implemented features allow automatic evaluation of patient-specific biokinetics from different series of patient images, enabling patient-specific dosimetry without the need for external software to estimate the cumulated activities in different VOIs.

      Abbreviations:

      OEDIPE (Outil d’Evaluation de la Dose Interne Personnalisée (Numerical tool for personalized assessment of internal dose)), CT (Computed Tomography), DICOM (Digital Imaging and Communications in Medicine), DVK (Dose Voxel Kernels), MCNPX (Monte-Carlo N-Particle eXtended), MIRD (Medical Internal Radiation Dose), NM (Nuclear Medicine), SPECT (Single-Photon Emission Computed Tomography), TACs (Time-Activity Curves), PET (Positron Emission Tomography), VOI (Volume Of Interest), WB (Whole Body)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Beierwaltes W.H.
        • Rabbani R.
        • Dmuchowski C.
        • Lloyd R.V.
        • Eyre P.
        • Mallette S.
        An analysis of “ablation of thyroid remnants” with I-131 in 511 patients from 1947–1984: experience at University of Michigan.
        J Nucl Med. 1984; 25: 1287-1293
        • Meier D.A.
        • Brill D.R.
        • Becker D.V.
        • Clarke S.E.M.
        • Silberstein E.B.
        • Royal H.D.
        • et al.
        Procedure guideline for therapy of thyroid disease with 131Iodine.
        J Nucl Med. 2002; 43: 856-861
        • Verburg F.A.
        • Flux G.
        • Giovanella L.
        • van Nostrand D.
        • Muylle K.
        • Luster M.
        Differentiated thyroid cancer patients potentially benefitting from postoperative I-131 therapy: a review of the literature of the past decade.
        Eur J Nucl Med Mol Imaging. 2020; 47: 78-83https://doi.org/10.1007/s00259-019-04479-1
        • Sgouros G.
        • Bodei L.
        • McDevitt M.R.
        • Nedrow J.R.
        Radiopharmaceutical therapy in cancer: clinical advances and challenges.
        Nat Rev Drug Discov. 2020; 19: 589-608https://doi.org/10.1038/s41573-020-0073-9
        • Cremonesi M.
        • Ferrari M.E.
        • Bodei L.
        • Chiesa C.
        • Sarnelli A.
        • Garibaldi C.
        • et al.
        Correlation of dose with toxicity and tumour response to (90)Y- and (177)Lu-PRRT provides the basis for optimization through individualized treatment planning.
        Eur J Nucl Med Mol Imaging. 2018; 45: 2426-2441https://doi.org/10.1007/s00259-018-4044-x
        • Konijnenberg M.
        • Herrmann K.
        • Kobe C.
        • Verburg F.
        • Hindorf C.
        • Hustinx R.
        • et al.
        EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy.
        Eur J Nucl Med Mol Imaging. 2021; 48: 67-72https://doi.org/10.1007/s00259-020-05038-9
      1. Council of the European Union. European Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union; 2013.

        • Siegel J.A.
        • Thomas S.R.
        • Stubbs J.B.
        • Stabin M.G.
        MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates.
        J Nucl Med. 1999; 40: 37S
        • Garkavij M.
        • Nickel M.
        • Sjogreen-Gleisner K.
        • Ljungberg M.
        • Ohlsson T.
        • Wingardh K.
        • et al.
        177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy.
        Cancer. 2010; 116: 1084-1092https://doi.org/10.1002/cncr.24796
        • Koral K.F.
        • Dewaraja Y.
        • Li J.
        • Barrett C.L.
        • Regan D.D.
        • Zasadny K.R.
        • et al.
        Initial results for hybrid SPECT-conjugate-view tumor dosimetry in 131I-anti-B1 antibody therapy of previously untreated patients with lymphoma.
        J Nucl Med. 2000; 41: 1579-1586
        • Siegel J.A.
        • Thomas S.R.
        • Stubbs J.B.
        • Stabin M.G.
        • Hays M.T.
        • Koral K.F.
        • et al.
        MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates.
        J Nucl Med. 1999; 40: 37S-61S
        • Capala J.
        • Graves S.A.
        • Scott A.
        • Sgouros G.
        • James S.S.
        • Zanzonico P.
        • et al.
        Dosimetry for radiopharmaceutical therapy: current practices and commercial resources.
        J Nucl Med. 2021; 62: 3S-11Shttps://doi.org/10.2967/jnumed.121.262749
        • Kayal G.
        • Clayton N.
        • Vergara-Gil A.
        • Struelens L.
        • Bardiès M.
        Proof-of-concept of DosiTest: A virtual multicentric clinical trial for assessing uncertainties in molecular radiotherapy dosimetry.
        Phys Med. 2022; 97: 25-35https://doi.org/10.1016/j.ejmp.2022.03.011
        • Stabin M.G.
        • Sparks R.B.
        • Crowe E.
        OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine.
        J Nucl Med. 2005; 46: 1023-1027
        • Dieudonne A.
        • Hobbs R.F.
        • Bolch W.E.
        • Sgouros G.
        • Gardin I.
        Fine-resolution voxel S values for constructing absorbed dose distributions at variable voxel size.
        J Nucl Med. 2010; 51: 1600-1607https://doi.org/10.2967/jnumed.110.077149
        • Shiiba T.
        • Kuga N.
        • Kuroiwa Y.
        • Sato T.
        Evaluation of the accuracy of mono-energetic electron and beta-emitting isotope dose-point kernels using particle and heavy ion transport code system: PHITS.
        Appl Radiat Isot. 2017; 128: 199-203https://doi.org/10.1016/j.apradiso.2017.07.028
        • Götz T.
        • Schmidkonz C.
        • Lang E.W.
        • Maier A.
        • Kuwert T.
        • Ritt P.
        A comparison of methods for adapting 177Lu dose-voxel-kernels to tissue inhomogeneities.
        Phys Med Biol. 2019; 64245011https://doi.org/10.1088/1361-6560/ab5b81
        • Dieudonne A.
        • Hobbs R.F.
        • Lebtahi R.
        • Maurel F.
        • Baechler S.
        • Wahl R.L.
        • et al.
        Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct Monte Carlo methods.
        J Nucl Med. 2013; 54: 236-243https://doi.org/10.2967/jnumed.112.105825
        • Bolch W.E.
        • Bouchet L.G.
        • Robertson J.S.
        • Wessels B.W.
        • Siegel J.A.
        • Howell R.W.
        • et al.
        MIRD pamphlet no. 17: The dosimetry of nonuniform activity distributions - Radionuclide S values at the voxel level.
        J Nucl Med. 1999; 40: 11S-36S
        • Amato E.
        • Auditore L.
        • Italiano A.
        • Pistone D.
        • Arce P.
        • Campennì A.
        • et al.
        Full Monte Carlo internal dosimetry in nuclear medicine by means of GAMOS.
        J Phys Conf Ser. 2020; 1561012002https://doi.org/10.1088/1742-6596/1561/1/012002
        • Sato T.
        • Furuta T.
        • Liu Y.
        • Naka S.
        • Nagamori S.
        • Kanai Y.
        • et al.
        Individual dosimetry system for targeted alpha therapy based on PHITS coupled with microdosimetric kinetic model.
        EJNMMI Phys. 2021; 8: 4https://doi.org/10.1186/s40658-020-00350-7
        • Mora-Ramirez E.
        • Santoro L.
        • Cassol E.
        • Ocampo-Ramos J.C.
        • Clayton N.
        • Kayal G.
        • et al.
        Comparison of commercial dosimetric software platforms in patients treated with (177) Lu-DOTATATE for peptide receptor radionuclide therapy.
        Med Phys. 2020; 47: 4602-4615https://doi.org/10.1002/mp.14375
        • Della Gala G.
        • Bardiès M.
        • Tipping J.
        • Strigari L.
        Overview of commercial treatment planning systems for targeted radionuclide therapy.
        Phys Med. 2021; 92: 52-61https://doi.org/10.1016/j.ejmp.2021.11.001
        • Grassi E.
        • Fioroni F.
        • Ferri V.
        • Mezzenga E.
        • Sarti M.A.
        • Paulus T.
        • et al.
        Quantitative comparison between the commercial software STRATOS(®) by Philips and a homemade software for voxel-dosimetry in radiopeptide therapy.
        Phys Med. 2015; 31: 72-79https://doi.org/10.1016/j.ejmp.2014.10.002
        • Kafrouni M.
        • Allimant C.
        • Fourcade M.
        • Vauclin S.
        • Delicque J.
        • Ilonca A.D.
        • et al.
        Retrospective voxel-based dosimetry for assessing the ability of the body-surface-area model to predict delivered dose and radioembolization outcome.
        J Nucl Med. 2018; 59: 1289-1295https://doi.org/10.2967/jnumed.117.202937
        • Rosar F.
        • Schön N.
        • Bohnenberger H.
        • Bartholomä M.
        • Stemler T.
        • Maus S.
        • et al.
        Comparison of different methods for post-therapeutic dosimetry in [(177)Lu]Lu-PSMA-617 radioligand therapy.
        EJNMMI Phys. 2021; 8: 40https://doi.org/10.1186/s40658-021-00385-4
        • Andersson M.
        • Johansson L.
        • Eckerman K.
        • Mattsson S.
        IDAC-Dose 2.1, an internal dosimetry program for diagnostic nuclear medicine based on the ICRP adult reference voxel phantoms.
        EJNMMI Res. 2017; 7: 88https://doi.org/10.1186/s13550-017-0339-3
        • Wahl R.L.
        • Frey E.C.
        • Jacene H.A.
        • Kahl B.S.
        • Piantadosi S.
        • Bianco J.A.
        • et al.
        Prospective SPECT-CT organ dosimetry-driven radiation-absorbed dose escalation using the In-111 ((111)In)/Yttrium 90 ((90)Y) ibritumomab tiuxetan (Zevalin(®)) theranostic pair in patients with lymphoma at myeloablative dose levels.
        Cancers. 2021; 13https://doi.org/10.3390/cancers13112828
        • Hagmarker L.
        • Svensson J.
        • Rydén T.
        • van Essen M.
        • Sundlöv A.
        • Gleisner K.S.
        • et al.
        Bone marrow absorbed doses and correlations with hematologic response during (177)Lu-DOTATATE treatments are influenced by image-based dosimetry method and presence of skeletal metastases.
        J Nucl Med. 2019; 60: 1406-1413https://doi.org/10.2967/jnumed.118.225235
        • Kupitz D.
        • Wetz C.
        • Wissel H.
        • Wedel F.
        • Apostolova I.
        • Wallbaum T.
        • et al.
        Software-assisted dosimetry in peptide receptor radionuclide therapy with 177Lutetium-DOTATATE for various imaging scenarios.
        PLoS ONE. 2017; 12: e0187570
        • Chiavassa S.
        • Aubineau-Laniece I.
        • Bitar A.
        • Lisbona A.
        • Barbet J.
        • Franck D.
        • et al.
        Validation of a personalized dosimetric evaluation tool (Oedipe) for targeted radiotherapy based on the Monte Carlo MCNPX code.
        Phys Med Biol. 2006; 51: 601-616https://doi.org/10.1088/0031-9155/51/3/009
        • Petitguillaume A.
        • Bernardini M.
        • Broggio D.
        • De Labriolle V.C.
        • Franck D.
        • Desbreé A.
        OEDIPE, a software for personalized Monte Carlo dosimetry and treatment planning optimization in nuclear medicine: Absorbed dose and biologically effective dose considerations.
        Radioprotection. 2014; 49: 275-281https://doi.org/10.1051/radiopro/2014021
        • Benabdallah N.
        Optimisation de la dosimétrie en alphathérapie par approche multi-échelle : application au traitement des métastases osseuses par le 223Ra (Optimization of dosimetry in alphatherapy by a multi-scale approach : application to the treatment of bone metastases with 223Ra): Thesis.
        Université Paris-Saclay. 2017;
        • Finocchiaro D.
        • Gear J.I.
        • Fioroni F.
        • Flux G.D.
        • Murray I.
        • Castellani G.
        • et al.
        Uncertainty analysis of tumour absorbed dose calculations in molecular radiotherapy.
        EJNMMI Phys. 2020; 7: 63https://doi.org/10.1186/s40658-020-00328-5
        • Ilan E.
        • Sandström M.
        • Wassberg C.
        • Sundin A.
        • Garske-Román U.
        • Eriksson B.
        • et al.
        Dose response of pancreatic neuroendocrine tumors treated with peptide receptor radionuclide therapy using 177Lu-DOTATATE.
        J Nucl Med. 2015; 56: 177-182https://doi.org/10.2967/jnumed.114.148437
      2. International Commission on Radiological Protection. Radionuclide Transformations – Energy and Intensity of Emissions. ICRP Publication 38. 1983;Ann. ICRP 11–13.

      3. Hendricks JS, McKinney GW, Fensin ML, James MR, Johns RC, Durkee JW, et al. MCNPX 2.6.0 Extensions [LA-UR-08-2216].Los Alamos: Los Alamos National Laboratory; 2008.

        • Gregory R.A.
        • Murray I.
        • Gear J.
        • Leek F.
        • Chittenden S.
        • Fenwick A.
        • et al.
        Standardised quantitative radioiodine SPECT/CT Imaging for multicentre dosimetry trials in molecular radiotherapy.
        Phys Med Biol. 2019; 64245013https://doi.org/10.1088/1361-6560/ab5b6c
        • Erlandsson K.
        • Buvat I.
        • Pretorius P.H.
        • Thomas B.A.
        • Hutton B.F.
        A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology.
        Phys Med Biol. 2012; 57: R119-R159https://doi.org/10.1088/0031-9155/57/21/R119
        • Leboulleux S.
        • Cao C.D.
        • Zerdoud S.
        • Attard M.
        • Bournaud C.
        • Benisvy D.
        • et al.
        MERAIODE: a redifferentiation phase II trial with trametinib and dabrafenib followed by radioactive iodine administration for metastatic radioactive iodine refractory differentiated thyroid cancer patients with a BRAFV600E mutation (NCT 03244956).
        J Endocr Soc. 2021; 5: A876-Ahttps://doi.org/10.1210/jendso/bvab048.1789
      4. International Commission on Radiation Units & Measurements. ICRU Report 44: Tissue Substitutes in Radiation Dosimetry and Measurement 1989.

        • van Gils C.A.J.
        • Beijst C.
        • van Rooij R.
        • de Jong H.W.A.M.
        Impact of reconstruction parameters on quantitative I-131 SPECT.
        Phys Med Biol. 2016; 61: 5166-5182https://doi.org/10.1088/0031-9155/61/14/5166
        • Dewaraja Y.K.
        • Ljungberg M.
        • Green A.J.
        • Zanzonico P.B.
        • Frey E.C.
        • Bolch W.E.
        • et al.
        MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications.
        J Nucl Med. 2013; 54: 2182-2188https://doi.org/10.2967/jnumed.113.122390
        • Dewaraja Y.K.
        • Frey E.C.
        • Sgouros G.
        • Brill A.B.
        • Roberson P.
        • Zanzonico P.B.
        • et al.
        MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy.
        J Nucl Med. 2012; 53: 1310-1325https://doi.org/10.2967/jnumed.111.100123
        • Verburg F.A.
        • Hänscheid H.
        • Luster M.
        Radioactive iodine (RAI) therapy for metastatic differentiated thyroid cancer.
        Best Pract Res Clin Endocrinol Metab. 2017; 31: 279-290https://doi.org/10.1016/j.beem.2017.04.010
        • Rani D.
        • Kaisar S.
        • Awasare S.
        • Kamaldeep A.A.
        • Basu S.
        Examining recombinant human TSH primed 131I therapy protocol in patients with metastatic differentiated thyroid carcinoma: comparison with the traditional thyroid hormone withdrawal protocol.
        Eur J Nucl Med Mol Imaging. 2014; 41: 1767-1780https://doi.org/10.1007/s00259-014-2737-3
        • Pötzi C.
        • Moameni A.
        • Karanikas G.
        • Preitfellner J.
        • Becherer A.
        • Pirich C.
        • et al.
        Comparison of iodine uptake in tumour and nontumour tissue under thyroid hormone deprivation and with recombinant human thyrotropin in thyroid cancer patients.
        Clin Endocrinol. 2006; 65: 519-523https://doi.org/10.1111/j.1365-2265.2006.02626.x
        • de Keizer B.
        • Brans B.
        • Hoekstra A.
        • Zelissen P.M.
        • Koppeschaar H.P.
        • Lips C.J.
        • et al.
        Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy.
        Eur J Nucl Med Mol Imaging. 2003; 30: 367-373https://doi.org/10.1007/s00259-002-1076-y
        • Hänscheid H.
        • Lassmann M.
        • Luster M.
        • Thomas S.R.
        • Pacini F.
        • Ceccarelli C.
        • et al.
        Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal.
        J Nucl Med. 2006; 47: 648-654
        • Remy H.
        • Borget I.
        • Leboulleux S.
        • Guilabert N.
        • Lavielle F.
        • Garsi J.
        • et al.
        131I effective half-life and dosimetry in thyroid cancer patients.
        J Nucl Med. 2008; 49: 1445-1450https://doi.org/10.2967/jnumed.108.052464
        • Wierts R.
        • Brans B.
        • Havekes B.
        • Kemerink G.J.
        • Halders S.G.
        • Schaper N.N.
        • et al.
        Dose-response relationship in differentiated thyroid cancer patients undergoing radioiodine treatment assessed by means of 124I PET/CT.
        J Nucl Med. 2016; 57: 1027-1032https://doi.org/10.2967/jnumed.115.168799
        • Song H.
        • He B.
        • Prideaux A.
        • Du Y.
        • Frey E.
        • Kasecamp W.
        • et al.
        Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases.
        J Nucl Med. 2006; 47: 1985-1994
        • Sgouros G.
        • Kolbert K.S.
        • Sheikh A.
        • Pentlow K.S.
        • Mun E.F.
        • Barth A.
        • et al.
        Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software.
        J Nucl Med. 2004; 45: 1366-1372
        • Klain M.
        • Nappi C.
        • De Risi M.
        • Piscopo L.
        • Volpe F.
        • Manganelli M.
        • et al.
        Whole-body radioiodine effective half-life in patients with differentiated thyroid cancer.
        Diagnostics. 2021; 11: 1740https://doi.org/10.3390/diagnostics11101740