Advertisement

Optimization of the energy window setting in Ir-192 source imaging for high-dose-rate brachytherapy using a YAP(Ce) gamma camera

Published:October 13, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.09.017

      Highlight

      • Optimum parameters were determined on Ir-192 source used for HDR brachytherapy.
      • The spatial resolution was highest for the central energy of the window at ∼300 keV.
      • The scatter fraction was smallest for the central energy of the window at ∼300 keV.
      • The scatter fraction central energy of the window at ∼300 keV was more than 48 % smaller than that for full energy window.

      Abstract

      Purpose

      Although real-time imaging of the high-activity iridium-192 (Ir-192) source position during high-dose-rate (HDR) brachytherapy using a high-energy gamma camera system is a promising approach, the energy window was not optimized for spatial resolution or scatter fraction.

      Methods

      By using a list-mode data-acquisition system that can acquire energy information of a cerium-doped yttrium aluminum perovskite (YA1O3: YAP(Ce)) gamma camera, we tried to optimize the energy window’s setting to improve the spatial resolution and reduce scatter fraction.

      Results

      The spatial resolution was highest for the central energy of the window at ∼300 keV. The scatter fraction was also smallest for the central energy of the window at ∼300 keV, and the scatter fraction was more than 48 % smaller than that for the full energy window.

      Conclusions

      We clarified that the spatial resolution can be improved and the scatter fraction can be reduced through optimizing the energy window of the YAP(Ce) gamma camera by setting the central energy of the window to ∼300 keV for HDR brachytherapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Valentin J, Prevention of high-dose-rate brachytherapy accidents. International Commission on Radiological Protection, Publication 97, Ann ICRP, 2005;35(2):1-51. http://DOI: 10.1016/j.icrp.2005.05.002.

      2. Nishimura T, Event reports on high-dose-rate remote afterloader treatment, In: High-Dose-Rate Brachytherapy Guidance Using MicroSelectron HDR 2013 (in Japanese). Tokyo: Chiyoda Technol, Dokiya T and The guidance working group for microSelectron HDR study group, Eds. 2013, 95–104.

      3. Task Group on Accident Prevention and Safety in Radiation Therapy., Prevention of accidental exposures to patients undergoing radiation therapy. A report of the International Commission on Radiological Protection, Ann ICRP. 2000;30(3):7-70. http://DOI: 10.1016/s0146-6453(01)00035-5.

      4. Richardson S, A 2-year review of recent Nuclear Regulatory Commission events: What errors occur in the modern brachytherapy era?, Pract Rad Oncol 2012;2:157–63. http://DOI: 10.1016/j.prro.2011.08.004.

        • Thomadsen B.
        • Lin S.-W.
        • Laemmrich P.
        • Waller T.
        • Cheng A.
        • Caldwell B.
        • et al.
        Analysis of treatment delivery errors in brachytherapy using formal risk analysis techniques.
        Int J Radiat Oncol Biol Phys. 2003; 57: 1492-1508https://doi.org/10.1016/s0360-3016(03)01622-5
        • Nakano T.
        • Suchowerska N.
        • McKenzie D.R.
        • et al.
        Real-time verification of HDR brachytherapy source location: Implementation of detector redundancy.
        Phys Med Biol. 2005; 50: 319-327https://doi.org/10.1088/0031-9155/50/2/010
        • Nose T.
        • Chatani M.
        • Otani Y.
        • Teshima T.
        • Kumita S.
        Real-time verification of a high-dose-rate iridium 192 source position using a modified c-arm fluoroscope.
        Int J Radiat Oncol Biol Phys. 2017; 97: 858-865https://doi.org/10.1016/j.ijrobp.2016.12.005
      5. S. Majewski A.G. Weisenberger B. Kross D. Kieper et al. Feasibility study of in situ imaging of Ir-192 source during HDR brachytherapy procedure using a small gamma imager based on a Hamamatsu R3292 PSPMT IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference 2000;1613–1617 10.1109/NSSMIC.1999.842876.

        • Duan J.
        • Macey D.J.
        • Pareek P.N.
        • et al.
        Real-time monitoring and verification of in vivo high dose rate brachytherapy using a pinhole camera.
        Med Phys. 2001; 28: 167-173https://doi.org/10.1118/1.1339882
        • Safavi-Naeini M.
        • Han Z.
        • Alnaghy S.
        • Cutajar D.
        • Petasecca M.
        • Lerch M.L.F.
        • et al.
        BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation: BrachyView, an in-body imaging system for HDR brachytherapy.
        Med Phys. 2015; 42: 7098-7107https://doi.org/10.1118/1.4935866
        • Batič M.
        • Burger J.
        • Cindro V.
        • Kramberger G.
        • Mandič I.
        • Mikuž M.
        • et al.
        Verification of high dose rate 192Ir source position during brachytherapy treatment.
        Nucl Instrum Meth A. 2010; 617: 206-208https://doi.org/10.1016/j.nima.2009.09.122
        • Tanderup K.
        • Beddar S.
        • Andersen C.E.
        • Kertzscher G.
        • Cygler J.E.
        In vivo dosimetry in brachytherapy : In vivo dosimetry in brachytherapy.
        Med Phys. 2013; 40: 070902https://doi.org/10.1118/1.4810943
      6. Watanabe Y, Muraishi H, Takei H, et al., Automated source tracking with a pinhole imaging system during high-dose-rate brachytherapy treatment. Phys. Med. Biol. 2018;63(14):145002. https://doi: 10.1088/1361-6560/aacdc9.

        • Kertzscher G.
        • Rosenfeld A.
        • Beddar S.
        • Tanderup K.
        • Cygler J.E.
        In vivo dosimetry: Trends and prospects for brachytherapy.
        Br J Radiol. 2014; 87: 20140206https://doi.org/10.1259/bjr.20140206
        • Okamoto H.
        • Iijima K.
        • Chiba T.
        • et al.
        Analysis of brachytherapy source movement by high-speed camera.
        Med Phys. 2022; 49: 4804-4811https://doi.org/10.1002/mp.15601
        • Bassi S.
        • Berrigan L.
        • Zuchora A.
        • Fahy L.
        • Moore M.
        End-to-end dosimetric audit: A novel procedure developed for Irish HDR brachytherapy centres.
        Phys Med. 2020; 80: 221-229https://doi.org/10.1016/j.ejmp.2020.10.005
        • Linares Rosales H.M.
        • Couture G.
        • Archambault L.
        • Beddar S.
        • Després P.
        • Beaulieu L.
        On the use of machine learning methods for mPSD calibration in HDR brachytherapy.
        Phys Med. 2021; 91: 73-79https://doi.org/10.1016/j.ejmp.2021.10.003
        • Linares Rosales H.M.
        • Johansen J.G.
        • Kertzscher G.
        • Tanderup K.
        • Beaulieu L.
        • Beddar S.
        3D source tracking and error detection in HDR using two independent scintillator dosimetry systems.
        Med Phys. 2021; 48: 2095-2107https://doi.org/10.1002/mp.14607
        • Jayakody M.
        • Jeyasugiththan J.
        • Rajasooriyar C.
        • Chougule A.
        Dosimetry procedure to verify dose in High Dose Rate (HDR) brachytherapy treatment of cancer patients: A systematic review.
        Physica Med. 2022; 96: 70-80https://doi.org/10.1016/j.ejmp.2022.02.022
        • Pu G.
        • Jiang S.
        • Yang Z.
        • Hu Y.
        • Liu Z.
        A novel ultrasound probe calibration method for multimodal image guidance of needle placement in cervical cancer brachytherapy.
        Physica Med. 2022; 100: 81-89https://doi.org/10.1016/j.ejmp.2022.06.009
        • Hanlon M.D.
        • Smith R.L.
        • Franich R.D.
        MaxiCalc: A tool for online dosimetric evaluation of source-tracking based treatment verification in HDR brachytherapy.
        Physica Med. 2022; 94: 58-64https://doi.org/10.1016/j.ejmp.2021.12.008
      7. Nagata J, Yamamoto S, Noguchi Y, et al., Development of a low-sensitivity high resolution YAP(Ce) scintillation camera system toward the real-time imaging of an 192Ir source during high-dose-rate brachytherapy, 2020 JINST 15 P12018. https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12018.

        • Nagata J.
        • Yamamoto S.
        • Noguchi Y.
        • Nakaya T.
        • Okudaira K.
        • Kamada K.
        • et al.
        Development of a simultaneous imaging system to measure the optical and gamma ray images of Ir-192 source for high-dose-rate brachytherapy.
        J Inst. 2021; 16: T12005
        • Kramer R.
        • Santos A.M.
        • Brayner C.A.O.
        • Khoury H.J.
        • Vieira J.W.
        • Lima F.R.A.
        Application of the MAX/EGS4 exposure model to the dosimetry of the Yanango radiation accident.
        Phys Med Biol. 2005; 50: 3681-3695https://doi.org/10.1088/0031-9155/50/16/003
      8. Yamaguchi M, Nagao Y, Ando K, et al., Imaging of monochromatic beams by measuring secondary electron bremsstrahlung for carbon-ion therapy using a pinhole x-ray camera, Phys Med Biol 63(4): 045016, 2018. https://doi:10.1088/1361-6560/aaa17c.

      9. Yamamoto S, Yamaguchi M, Akagi T, et al., Development of a YAP(Ce) camera for the imaging of secondary electron bremsstrahlung x-ray emitted during carbon-ion irradiation toward the use of clinical conditions, Phys Med Biol 64: 135019 (15pp), 2019. https://doi:10.1088/1361-6560/ab2072.

        • Yamamoto S.
        Optimization of the integration time of pulse shape analysis for dual-layer GSO detector with different amount of Ce.
        Nucl Instrum Meth in Phys Res A. 2008; 587: 319-323https://doi.org/10.1016/j.nima.2008.01.084
        • Yamamoto S.
        • Imaizumi M.
        • Watabe T.
        • Watabe H.
        • Kanai Y.
        • Shimosegawa E.
        • et al.
        Development of a Si-PM-based high-resolution PET system for small animals.
        Phys Med Biol. 2010; 55: 5817-5831https://doi.org/10.1088/0031-9155/55/19/013
        • Yamamoto S.
        • Watabe H.
        • Kanai Y.
        • Watabe T.
        • Kato K.
        • Hatazawa J.
        Development of an ultrahigh resolution Si-PM based PET system for small animals.
        Phys Med Biol. 2013; 58: 7875-7888https://doi.org/10.1088/0031-9155/58/21/7875
      10. National Electrical Manufacturers Association, Performance measurements of positron emission tomographs, NEMA Standards, Publication NU2-2001 Rosslyn, VA, USA, National Electrical Manufacturers Association, 2001.

      11. Agostinelli S, Allison J, Amako K, et al., GEANT4: an ionization chamber toolkit. Nucl Instrum Meth, A, 2003. 506:205–303. https://doi.org/10.1016/S0168-9002(03)01368-8.