Advertisement

Point scintillator dosimetry in ultra-high dose rate electron “FLASH” radiation therapy: A first characterization

Published:October 24, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.10.005

      Highlights

      • Point scintillator dosimetry as promising real time solution for FLASH radiotherapy.
      • Point scintillator detectors allow linear calibration with dose.
      • Luminescence decay time is the limiting factor for point scintillators in FLASH.
      • Saturation with dose per pulse is caused by luminescence decay time.

      Abstract

      FLASH radiation therapy is a novel technique combining ultra-high dose rates (UHDR) with very short treatment times to strongly decrease normal tissue toxicity while preserving the anti-tumoral effect. However, the radiobiological mechanisms and exact conditions for obtaining the FLASH-effect are still under investigation. There are strong indications that parameters defining the beam structure, such as dose per pulse, instantaneous dose rate and pulse repetition frequency (PRF) are of importance. UHDR irradiations therefore come with dosimetric challenges, including both dose assessment and temporal ones. In this work, a first characterization of 6 real-time point scintillating dosimeters with 5 phosphors (Al 2 O 3 :C,Mg; Y 2 O 3 :Eu; Al 2 O 3 :C; (C38H34P 2 )MnBr 4 and (C38H34P 2 )MnCl 4 , was performed in an UHDR pulsed electron beam. The dose rate independence of the calibration was tested by calibrating the detector at conventional and UHDR. Dose rate dependence was observed, however, further investigation, including intermediate dose rates, is needed. Linearity of the response with dose was tested by varying the number of pulses and a linearity with R 2 > 0.9989 was observed up to at least 200 Gy. Dose per pulse linearity was investigated by variation of the pulse length and SSD. All point scintillators showed saturation effects up to some extent and the instantaneous dose rate dependence was confirmed. A PRF dependence was observed for the Al 2 O 3 :C,Mg and Al 2 O 3 :C- based point scintillators. This was expected as the luminescence decay time of these materials exceeds the inter-pulse time.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Verellen D.
        • Ridder M.D.
        • Linthout N.
        • Tournel K.
        • Soete G.
        • Storme G.
        Innovations in image-guided radiotherapy.
        Nat Rev Cancer. 2007; 7: 949-960
        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6: 245ra93
        • Wilson J.D.
        • Hammond E.M.
        • Higgins G.S.
        • Petersson K.
        Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold?.
        Front Oncol. 2020; 9: 1563
        • Kacem H.
        • Almeida A.
        • Cherbuin N.
        • Vozenin M.-C.
        Understanding the FLASH effect to unravel the potential of ultra-high dose rate irradiation.
        Int J Radiat Biol. 2022; 98: 506-516
        • Bourhis J.
        • Montay-Gruel P.
        • Jorge P.G.
        • Bailat C.
        • Petit B.
        • Ollivier J.
        • et al.
        Clinical translation of FLASH radiotherapy: Why and how?.
        Radiother Oncol. 2019; 139: 11-17
        • Montay-Gruel P.
        • Bouchet A.
        • Jaccard M.
        • Patin D.
        • Serduc R.
        • Aim W.
        • et al.
        X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice.
        Radiother Oncol. 2018; 129: 582-588
        • Vozenin M.-C.
        • Hendry J.H.
        • Limoli C.
        Biological benefits of ultra-high dose rate FLASH radiotherapy: sleeping beauty awoken.
        Clin Oncol. 2019; 31: 407-415
        • Vozenin M.-C.
        • De Fornel P.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.-F.
        • et al.
        The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients.
        Clin Cancer Res. 2019; 25: 35-42
        • Schüller A.
        • Heinrich S.
        • Fouillade C.
        • Subiel A.
        • De Marzi L.
        • Romano F.
        • et al.
        The European joint research project UHDpulse–Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates.
        Phys Medica. 2020; 80: 134-150
        • Konradsson E.
        • Ceberg C.
        • Lempart M.
        • Blad B.
        • Bäck S.
        • Knöös T.
        • et al.
        Correction for ion recombination in a built-in monitor chamber of a clinical linear accelerator at ultra-high dose rates.
        Radiat Res. 2020; 194: 580-586
        • Petersson K.
        • Jaccard M.
        • Germond J.-F.
        • Buchillier T.
        • Bochud F.
        • Bourhis J.
        • et al.
        High dose-per-pulse electron beam dosimetry—A model to correct for the ion recombination in the advanced markus ionization chamber.
        Med Phys. 2017; 44: 1157-1167
        • Di Martino F.
        • Barca P.
        • Barone S.
        • Bortoli E.
        • Borgheresi R.
        • De Stefano S.
        • et al.
        FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam.
        Front Phys. 2020; 8: 481
        • McManus M.
        • Romano F.
        • Lee N.
        • Farabolini W.
        • Gilardi A.
        • Royle G.
        • et al.
        The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate very high energy electron beams.
        Sci Rep. 2020; 10: 1-11
        • Montay-Gruel P.
        • Petersson K.
        • Jaccard M.
        • Boivin G.
        • Germond J.-F.
        • Petit B.
        • et al.
        Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s.
        Radiother Oncol. 2017; 124: 365-369
        • Bourhis J.
        • Sozzi W.J.
        • Jorge P.G.
        • Gaide O.
        • Bailat C.
        • Duclos F.
        • et al.
        Treatment of a first patient with FLASH-radiotherapy.
        Radiother Oncol. 2019; 139: 18-22
        • De Kruijff R.
        FLASH radiotherapy: ultra-high dose rates to spare healthy tissue.
        Int J Radiat Biol. 2020; 96: 419-423
        • Jorge P.G.
        • Jaccard M.
        • Petersson K.
        • Gondré M.
        • Durán M.T.
        • Desorgher L.
        • et al.
        Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate.
        Radiother Oncol. 2019; 139: 34-39
        • Romano F.
        • Bailat C.
        • Jorge P.G.
        • Lerch M.L.F.
        • Darafsheh A.
        Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy.
        Med Phys. 2022; 49: 4912-4932
        • (IEC) I.E.C.
        Particular requirements for the safety of medical electron accelerators in the range 1 MeV to 50 MeV.
        1992 (Publication 60601-2-1)
        • Gómez F.
        • Gonzalez-Castaño D.M.
        • Fernández N.G.
        • Pardo-Montero J.
        • Schüller A.
        • Gasparini A.
        • et al.
        Development of an ultra-thin parallel plate ionization chamber for dosimetry in FLASH radiotherapy.
        Med Phys. 2022; 49: 4705-4714
        • Di Martino F.
        • Barone S.
        • Del Sarto D.
        • Di Francesco M.
        • Galante F.
        • Gasparini A.
        • et al.
        A new model of gas chamber for UHDR range.
        Phys Medica. 2022; 94: S82
        • Marinelli M.
        • Felici G.
        • Galante F.
        • Gasparini A.
        • Giuliano L.
        • Heinrich S.
        • et al.
        Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry.
        Med Phys. 2022; 49: 1902-1910
        • Beddar S.
        • Beaulieu L.
        Scintillation dosimetry.
        CRC Press, 2016
        • Akselrod M.S.
        • Akselrod A.E.
        • Orlov S.S.
        • Sanyal S.
        • Underwood T.H.
        Fluorescent aluminum oxide crystals for volumetric optical data storage and imaging applications.
        J Fluorescence. 2003; 13: 503-511
        • Hu Y.
        • Qin Z.
        • Ma Y.
        • Zhao W.
        • Sun W.
        • Zhang D.
        • et al.
        Characterization of fiber radiation dosimeters with different embedded scintillator materials for radiotherapy applications.
        Sensors Actuators A. 2018; 269: 188-195
        • Beddar A.
        • Mackie T.
        • Attix F.
        Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations.
        Phys Med Biol. 1992; 37: 1883
        • Nowotny R.
        Radioluminescence of some optical fibres.
        Phys Med Biol. 2007; 52: N67
        • Nascimento L.
        • Vanhavere F.
        • Kodaira S.
        • Kitamura H.
        • Verellen D.
        • De Deene Y.
        Application of Al2O3: C+ fibre dosimeters for 290 MeV/n carbon therapeutic beam dosimetry.
        Radiat Phys Chem. 2015; 115: 75-80
        • Nascimento L.
        • Veronese I.
        • Loi G.
        • Mones E.
        • Vanhavere F.
        • Verellen D.
        Radioluminescence results from an Al2O3: C fiber prototype: 6 MV medical beam.
        Sensors Actuators A. 2018; 274: 1-9
        • Cusumano D.
        • Placidi L.
        • D’Agostino E.
        • Boldrini L.
        • Menna S.
        • Valentini V.
        • et al.
        Characterization of an inorganic scintillator for small-field dosimetry in MR-guided radiotherapy.
        J Appl Clin Med Phys. 2020; 21: 244-251
        • Holton M.
        • Silvestre O.
        • Errington R.
        • Smith P.
        • Rees P.
        • Summers H.
        Fluorescence lifetime based contrast imaging using variable period excitation pulse trains.
        in: Multiphoton microscopy in the biomedical sciences IX. Vol. 7183. SPIE, 2009: 396-402
        • Xu L.-J.
        • Lin X.
        • He Q.
        • Worku M.
        • Ma B.
        Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide.
        Nature Commun. 2020; 11: 1-7
        • Nascimento L.
        • Vanhavere F.
        • Boogers E.
        • Vandecasteele J.
        • De Deene Y.
        Medical dosimetry using a RL/OSL prototype.
        Radiat Meas. 2014; 71: 359-363