Advertisement

A new calculation method for the free electron fraction of an ionization chamber in the ultra-high-dose-per-pulse regimen

Published:November 09, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.11.001

      Highlights

      • The free-electrons-fraction is the fraction of the electrons generated that are collected without attachment.
      • The method proposed is based only from measure of charge collected varying the voltage applied.
      • The method proposed can be use in the commissioning phase of a dedicated to the Flash radiotherapy Linac.

      Abstract

      The free electron fraction is the fraction of electrons, produced inside the cavity of an ionization chamber after irradiation, which does not bind to gas molecules and thereby reaches the electrode as free electrons. It is a fundamental quantity to describe the recombination processes of an ionization chamber, as it generates a gap of positive charges compared to negative ones, which certainly will not undergo recombination.
      The free electron fraction depends on the specific chamber geometry, the polarizing applied voltage and the gas thermodynamic properties. Therefore, it is necessary to evaluate such fraction in an accurate and easy way for any measurement condition.
      In this paper, a simple and direct method for evaluating the free electron fraction of ionization chambers is proposed.
      We first model the capture process of the electrons produced inside an ionization chamber after the beam pulse; then we present a method to evaluate the free electron fraction based on simple measurements of collected charge, by varying the applied voltage. Finally, the results obtained using an Advanced Markus chamber irradiated with a Flash Radiotherapy dedicated research Linac (ElectronFlash) to estimate the free electron fraction are presented.
      The proposed method allows the use of a conventional ionization chamber for measurements in ultra-high-dose-per-pulse (UHDP) conditions, up to values of dose-per-pulse at which the perturbation of the electric field due to the generated charge can be considered negligible.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6: 245ra93https://doi.org/10.1126/scitranslmed.3008973
        • Montay-Gruel P.
        • Acharya M.M.
        • Petersson K.
        • Alikhani L.
        • Yakkala C.
        • Allen B.D.
        • et al.
        Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species.
        PNAS. 2019; 116: 10943-10951https://doi.org/10.1073/pnas.1901777116
        • Vozenin M.-C.
        • Fornel P.D.
        • Petersson K.
        • Favaudon V.
        • Jaccard M.
        • Germond J.-F.
        • et al.
        The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients.
        Clin Cancer Res. 2019; 25: 35-42https://doi.org/10.1158/1078-0432.CCR-17-3375
        • Bourhis J.
        • Montay-Gruel P.
        • Jorge P.G.
        • Bailat C.
        • Petit B.
        • Ollivier J.
        • et al.
        Clinical translation of FLASH radiotherapy: Why and how?.
        Radiother Oncol. 2019; 139: 11-17https://doi.org/10.1016/j.radonc.2019.04.008
        • Spitz D.R.
        • Buettner G.R.
        • Petronek M.S.
        • St-Aubin J.J.
        • Flynn R.T.
        • Waldron T.J.
        • et al.
        An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses.
        Radiother Oncol. 2019; 139: 23-27https://doi.org/10.1016/j.radonc.2019.03.028
      1. FLASH radiotherapy: from preclinical promise to the first human treatment. Physics World 2019. https://physicsworld.com/a/flash-radiotherapy-from-preclinical-promise-to-the-first-human-treatment/ (accessed July 21, 2021).

        • Durante M.
        • Bräuer-Krisch E.
        • Hill M.
        Faster and safer? FLASH ultra-high dose rate in radiotherapy.
        Br J Radiol. 2018; 91: 20170628https://doi.org/10.1259/bjr.20170628
        • Bourhis J.
        • Sozzi W.J.
        • Jorge P.G.
        • Gaide O.
        • Bailat C.
        • Duclos F.
        • et al.
        Treatment of a first patient with FLASH-radiotherapy.
        Radiother Oncol. 2019; 139: 18-22https://doi.org/10.1016/j.radonc.2019.06.019
      2. TRS398_scr.pdf n.d.

        • Jorge P.G.
        • Jaccard M.
        • Petersson K.
        • Gondré M.
        • Durán M.T.
        • Desorgher L.
        • et al.
        Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate.
        Radiother Oncol. 2019; 139: 34-39https://doi.org/10.1016/j.radonc.2019.05.004
        • McManus M.
        • Romano F.
        • Lee N.D.
        • Farabolini W.
        • Gilardi A.
        • Royle G.
        • et al.
        The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams.
        Sci Rep. 2020; 10: 9089https://doi.org/10.1038/s41598-020-65819-y
        • Subiel A.
        • Moskvin V.
        • Welsh G.H.
        • Cipiccia S.
        • Reboredo D.
        • DesRosiers C.
        • et al.
        Challenges of dosimetry of ultra-short pulsed very high energy electron beams.
        Phys Med. 2017; 42: 327-331https://doi.org/10.1016/j.ejmp.2017.04.029
        • Bazalova-Carter M.
        • Esplen N.
        On the capabilities of conventional x-ray tubes to deliver ultra-high (FLASH) dose rates.
        Med Phys. 2019; 46: 5690-5695https://doi.org/10.1002/mp.13858
        • Di Martino F.
        • Giannelli M.
        • Traino A.C.
        • Lazzeri M.
        Ion recombination correction for very high dose-per-pulse high-energy electron beams.
        Med Phys. 2005; 32: 2204-2210https://doi.org/10.1118/1.1940167
        • Laitano R.F.
        • Guerra A.S.
        • Pimpinella M.
        • Caporali C.
        • Petrucci A.
        Charge collection efficiency in ionization chambers exposed to electron beams with high dose per pulse.
        Phys Med Biol. 2006; 51: 6419-6436https://doi.org/10.1088/0031-9155/51/24/009
      3. EBOOK: The Dosimetry Of Ionizing Radiation Book PDF EPUB TUEBL MOBI n.d. https://pockettorch.net/get-ebook/file.php?id=sisSBQAAQBAJ&item=the-dosimetry-of-ionizing-radiation (accessed March 22, 2022).

        • Boag J.W.
        • Hochhäuser E.
        • Balk O.A.
        The effect of free-electron collection on the recombination correction to ionization measurements of pulsed radiation.
        Phys Med Biol. 1996; 41: 885-897https://doi.org/10.1088/0031-9155/41/5/005
        • Di Martino F.
        • Barca P.
        • Barone S.
        • Bortoli E.
        • Borgheresi R.
        • De Stefano S.
        • et al.
        FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam.
        Front Phys. 2020; https://doi.org/10.3389/fphy.2020.570697
        • Di Martino F.
        • Del Sarto D.
        • Bisogni M.G.
        • Capaccioli S.
        • Galante F.
        • Gasperini A.
        • et al.
        A new solution for UHDP and UHDR (Flash) measurements: theory and conceptual design of ALLS chamber.
        Phys Med. 2022; 102: 9-18https://doi.org/10.1016/j.ejmp.2022.08.010
      4. Rodrguez FG, Gonzalez-Castao DM, Fernndez G, Pardo-Montero J, Schller A, Vanreusel V, et al. Chamber for Dosimetry in FLASH Radiotherapy n.d.:19.

        • Schüller A.
        • Heinrich S.
        • Fouillade C.
        • Subiel A.
        • De Marzi L.
        • Romano F.
        • et al.
        The European Joint research project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates.
        Phys Med. 2020; 80: 134-150https://doi.org/10.1016/j.ejmp.2020.09.020
        • Jaccard M.
        • Petersson K.
        • Buchillier T.
        • Germond J.
        • Durán M.T.
        • Vozenin M.
        • et al.
        High dose-per-pulse electron beam dosimetry: Usability and dose-rate independence of EBT3 Gafchromic films.
        Med Phys. 2017; 44: 725-735https://doi.org/10.1002/mp.12066
      5. Marinelli M, Felici G, Galante F, Gasparini A, Giuliano L, Heinrich S, et al. Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Medical Physics n.d.;n/a. https://doi.org/10.1002/mp.15473.