Advertisement

Radiation pneumonitis prediction model with integrating multiple dose-function features on 4DCT ventilation images

Published:December 17, 2022DOI:https://doi.org/10.1016/j.ejmp.2022.11.009

      Highlights

      • We predict RP with machine learning using 4DCT based ventilation images.
      • Relative regression coefficients (RRC) were calculated using LASSO.
      • RRCs have potential to support functional image-guided radiotherapy.

      Abstract

      Purpose

      Radiation pneumonitis (RP) is dose-limiting toxicity for non-small-cell cancer (NSCLC). This study developed an RP prediction model by integrating dose-function features from computed four-dimensional computed tomography (4DCT) ventilation using the least absolute shrinkage and selection operator (LASSO).

      Methods

      Between 2013 and 2020, 126 NSCLC patients were included in this study who underwent a 4DCT scan to calculate ventilation images. We computed two sets of candidate dose-function features from (1) the percentage volume receiving > 20 Gy or the mean dose on the functioning zones determined with the lower cutoff percentile ventilation value, (2) the functioning zones determined with lower and upper cutoff percentile ventilation value using 4DCT ventilation images. An RP prediction model was developed by LASSO while simultaneously determining the regression coefficient and feature selection through fivefold cross-validation.

      Results

      We found 39.3 % of our patients had a ≥ grade 2 RP. The mean area under the curve (AUC) values for the developed models using clinical, dose-volume, and dose-function features with a lower cutoff were 0.791, and the mean AUC values with lower and upper cutoffs were 0.814. The relative regression coefficient (RRC) on dose-function features with upper and lower cutoffs revealed a relative impact of dose to each functioning zone to RP. RRCs were 0.52 for the mean dose on the functioning zone, with top 20 % of all functioning zone was two times greater than that of 0.19 for these with 60 %–80 % and 0.17 with 40 %–60 % (P < 0.01).

      Conclusions

      The introduction of dose-function features computed from functioning zones with lower and upper cutoffs in a machine learning framework can improve RP prediction. The RRC given by LASSO using dose-function features allows for the quantification of the RP impact of dose on each functioning zones and having the potential to support treatment planning on functional image-guided radiotherapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Graham M.V.
        • Purdy J.A.
        • Emami B.
        • Harms W.
        • Bosch W.
        • Lockett M.A.
        • et al.
        Clinical dose–volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC).
        Int J Radiat Oncol Biol Phys. 1999; 45: 323-329
        • Hernando M.L.
        • Marks L.B.
        • Bentel G.C.
        • Zhou S.-M.
        • Hollis D.
        • Das S.K.
        • et al.
        Radiation-induced pulmonary toxicity: a dose-volume histogram analysis in 201 patients with lung cancer.
        Int J Radiat Oncol Biol Phys. 2001; 51: 650-659
        • Yamamoto T.
        • Tsukita Y.
        • Katagiri Y.u.
        • Matsushita H.
        • Umezawa R.
        • Ishikawa Y.
        • et al.
        Durvalumab after chemoradiotherapy for locally advanced non-small cell lung cancer prolonged distant metastasis-free survival, progression-free survival and overall survival in clinical practice.
        BMC Cancer. 2022; 22
      1. Marks LB, Bentzen SM, Deasy JO, Kong FM, Bradley JD, Vogelius IS, et al. Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 2010;76:S70-6.

        • Vogelius I.R.
        • Bentzen S.M.
        A literature-based meta-analysis of clinical risk factors for development of radiation induced pneumonitis.
        Acta Oncol. 2012; 51: 975-983
        • Yom S.S.
        • Liao Z.
        • Liu H.H.
        • Tucker S.L.
        • Hu C.-S.
        • Wei X.
        • et al.
        Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy.
        Int J Radiat Oncol Biol Phys. 2007; 68: 94-102
        • Matsuoka S.
        • Kurihara Y.
        • Yagihashi K.
        • Hoshino M.
        • Watanabe N.
        • Nakajima Y.
        Quantitative assessment of air trapping in chronic obstructive pulmonary disease using inspiratory and expiratory volumetric MDCT.
        AJR Am J Roentgenol. 2008; 190: 762-769
        • Mathew L.
        • Wheatley A.
        • Castillo R.
        • Castillo E.
        • Rodrigues G.
        • Guerrero T.
        • et al.
        Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer.
        Acad Radiol. 2012; 19: 1546-1553
        • Zhang G.G.
        • Latifi K.
        • Du K.
        • Reinhardt J.M.
        • Christensen G.E.
        • Ding K.
        • et al.
        Evaluation of the ΔV 4D CT ventilation calculation method using in vivo xenon CT ventilation data and comparison to other methods.
        J Appl Clin Med Phys. 2016; 17: 550-560
        • Yamamoto T.
        • Kabus S.
        • Lorenz C.
        • Mittra E.
        • Hong J.C.
        • Chung M.
        • et al.
        Pulmonary ventilation imaging based on 4-dimensional computed tomography: comparison with pulmonary function tests and SPECT ventilation images.
        Int J Radiat Oncol Biol Phys. 2014; 90: 414-422
        • Yamamoto T.
        • Kabus S.
        • Klinder T.
        • Lorenz C.
        • von Berg J.
        • Blaffert T.
        • et al.
        Investigation of four-dimensional computed tomography-based pulmonary ventilation imaging in patients with emphysematous lung regions.
        Phys Med Biol. 2011; 56: 2279-2298
        • Hegi-Johnson F.
        • de Ruysscher D.
        • Keall P.
        • Hendriks L.
        • Vinogradskiy Y.
        • Yamamoto T.
        • et al.
        Imaging of regional ventilation: Is CT ventilation imaging the answer? A systematic review of the validation data.
        Radiother Oncol. 2019; 137: 175-185
        • Vinogradskiy Y.
        • Koo P.J.
        • Castillo R.
        • Castillo E.
        • Guerrero T.
        • Gaspar L.E.
        • et al.
        Comparison of 4-dimensional computed tomography ventilation with nuclear medicine ventilation-perfusion imaging: a clinical validation study.
        Int J Radiat Oncol Biol Phys. 2014; 89: 199-205
        • Siva S.
        • Hardcastle N.
        • Kron T.
        • Bressel M.
        • Callahan J.
        • MacManus M.P.
        • et al.
        Ventilation/perfusion positron emission tomography-based assessment of radiation injury to lung.
        Int J Radiat Oncol Biol Phys. 2015; 93: 408-417
        • Yamamoto T.
        • Kabus S.
        • Bal M.
        • Keall P.
        • Benedict S.
        • Daly M.
        The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer.
        Radiother Oncol. 2016; 118: 227-231
        • O’Reilly S.
        • Jain V.
        • Huang Q.
        • Cheng C.
        • Teo B.-K.
        • Yin L.
        • et al.
        Dose to highly functional ventilation zones improves prediction of radiation pneumonitis for proton and photon lung cancer radiation therapy.
        Int J Radiat Oncol Biol Phys. 2020; 107: 79-87
        • Faught A.M.
        • Yamamoto T.
        • Castillo R.
        • Castillo E.
        • Zhang J.
        • Miften M.
        • et al.
        Evaluating which dose-function metrics are most critical for functional-guided radiation therapy.
        Int J Radiat Oncol Biol Phys. 2017; 99: 202-209
        • Vinogradskiy Y.
        • Castillo R.
        • Castillo E.
        • Tucker S.L.
        • Liao Z.
        • Guerrero T.
        • et al.
        Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes.
        Int J Radiat Oncol Biol Phys. 2013; 86: 366-371
        • Ieko Y.
        • Kadoya N.
        • Sugai Y.
        • Mouri S.
        • Umeda M.
        • Tanaka S.
        • et al.
        Assessment of a computed tomography-based radiomics approach for assessing lung function in lung cancer patients.
        Phys Med. 2022; 101: 28-35
        • Krafft S.P.
        • Rao A.
        • Stingo F.
        • Briere T.M.
        • Court L.E.
        • Liao Z.
        • et al.
        The utility of quantitative CT radiomics features for improved prediction of radiation pneumonitis.
        Med Phys. 2018; 45: 5317-5324
        • Katsuta Y.
        • Kadoya N.
        • Sugai Y.
        • Katagiri Y.u.
        • Yamamoto T.
        • Takeda K.
        • et al.
        Feasibility of differential dose—volume histogram features in multivariate prediction model for radiation pneumonitis occurrence.
        Diagnostics. 2022; 12: 1354
        • Chen S.
        • Zhou S.
        • Yin F.-F.
        • Marks L.B.
        • Das S.K.
        Investigation of the support vector machine algorithm to predict lung radiation-induced pneumonitis.
        Med Phys. 2007; 34: 3808-3814
        • Luna J.M.
        • Chao H.-H.
        • Diffenderfer E.S.
        • Valdes G.
        • Chinniah C.
        • Ma G.
        • et al.
        Predicting radiation pneumonitis in locally advanced stage II-III non-small cell lung cancer using machine learning.
        Radiother Oncol. 2019; 133: 106-112
        • Luo Y.i.
        • Jolly S.
        • Palma D.
        • Lawrence T.S.
        • Tseng H.-H.
        • Valdes G.
        • et al.
        A situational awareness Bayesian network approach for accurate and credible personalized adaptive radiotherapy outcomes prediction in lung cancer patients.
        Phys Med. 2021; 87: 11-23
        • Borst G.R.
        • Ishikawa M.
        • Nijkamp J.
        • Hauptmann M.
        • Shirato H.
        • Bengua G.
        • et al.
        Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters.
        Int J Radiat Oncol Biol Phys. 2010; 77: 1596-1603
        • Kipritidis J.
        • Tahir B.A.
        • Cazoulat G.
        • Hofman M.S.
        • Siva S.
        • Callahan J.
        • et al.
        The VAMPIRE challenge: a multi-institutional validation study of CT ventilation imaging.
        Med Phys. 2019; 46: 1198-1217
        • Yamamoto T.
        • Langner U.
        • Loo B.W.
        • Shen J.
        • Keall P.J.
        Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients.
        Int J Radiat Oncol Biol Phys. 2008; 72: 1250-1258
        • Kanai T.
        • Kadoya N.
        • Ito K.
        • Onozato Y.
        • Cho S.Y.
        • Kishi K.
        • et al.
        Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.
        J Radiat Res. 2014; 55: 1163-1170
        • Fuld M.K.
        • Easley R.B.
        • Saba O.I.
        • Chon D.
        • Reinhardt J.M.
        • Hoffman E.A.
        • et al.
        CT-measured regional specific volume change reflects regional ventilation in supine sheep.
        J Appl Physiol. 2008; 104: 1177-1184
        • Kipritidis J.
        • Siva S.
        • Hofman M.S.
        • Callahan J.
        • Hicks R.J.
        • Keall P.J.
        Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles.
        Med Phys. 2014; 41
        • Katsuta Y.
        • Kadoya N.
        • Mouri S.
        • Tanaka S.
        • Kanai T.
        • Takeda K.
        • et al.
        Prediction of radiation pneumonitis with machine learning using 4D-CT based dose-function features.
        J Radiat Res. 2021;
        • Marks L.B.
        • Sherouse G.W.
        • Munley M.T.
        • Bentel G.C.
        • Spencer D.P.
        Incorporation of functional status into dose-volume analysis.
        Med Phys. 1999; 26: 196-199
        • Yamamoto T.
        • Kabus S.
        • von Berg J.
        • Lorenz C.
        • Keall P.J.
        Impact of four-dimensional computed tomography pulmonary ventilation imaging-based functional avoidance for lung cancer radiotherapy.
        Int J Radiat Oncol Biol Phys. 2011; 79: 279-288
        • Antonia S.J.
        • Villegas A.
        • Daniel D.
        • Vicente D.
        • Murakami S.
        • Hui R.
        • et al.
        Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC.
        N Engl J Med. 2018; 379: 2342-2350
        • Antonia S.J.
        • Villegas A.
        • Daniel D.
        • Vicente D.
        • Murakami S.
        • Hui R.
        • et al.
        Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer.
        N Engl J Med. 2017; 377: 1919-1929
        • Vinogradskiy Y.
        • Tucker S.L.
        • Liao Z.
        • Martel M.K.
        Investigation of the relationship between gross tumor volume location and pneumonitis rates using a large clinical database of non-small-cell lung cancer patients.
        Int J Radiat Oncol Biol Phys. 2012; 82: 1650-1658
        • Dormann C.F.
        • Elith J.
        • Bacher S.
        • Buchmann C.
        • Carl G.
        • Carré G.
        • et al.
        Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.
        Ecography. 2013; 36: 27-46
        • Shi L.
        • Shi W.
        • Peng X.
        • Zhan Y.i.
        • Zhou L.
        • Wang Y.
        • et al.
        Development and validation a nomogram incorporating ct radiomics signatures and radiological features for differentiating invasive adenocarcinoma from adenocarcinoma in situ and minimally invasive adenocarcinoma presenting as ground-glass nodules measuring 5–10mm in diameter.
        Front Oncol. 2021; 11618677
        • Peduzzi P.
        • Concato J.
        • Kemper E.
        • Holford T.R.
        • Feinstein A.R.
        A simulation study of the number of events per variable in logistic regression analysis.
        J Clin Epidemiol. 1996; 49: 1373-1379
        • Tsukita Y.
        • Yamamoto T.
        • Mayahara H.
        • Hata A.
        • Takeda Y.
        • Nakayama H.
        • et al.
        Intensity-modulated radiation therapy with concurrent chemotherapy followed by durvalumab for stage III non-small cell lung cancer: A multi-center retrospective study.
        Radiother Oncol. 2021; 160: 266-272
        • Yamamoto T.
        • Kabus S.
        • Lorenz C.
        • Johnston E.
        • Maxim P.G.
        • Diehn M.
        • et al.
        4D CT lung ventilation images are affected by the 4D CT sorting method.
        Med Phys. 2013; 40
        • Yamamoto T.
        • Kabus S.
        • Klinder T.
        • von Berg J.
        • Lorenz C.
        • Loo B.W.
        • et al.
        Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics.
        Med phys. 2011; 38: 1348-1358
        • Vinogradskiy Y.
        • Schubert L.
        • Diot Q.
        • Waxweiller T.
        • Koo P.
        • Castillo R.
        • et al.
        Regional lung function profiles of stage I and III lung cancer patients: an evaluation for functional avoidance radiation therapy.
        Int J Radiat Oncol Biol Phys. 2016; 95: 1273-1280
        • Yamamoto T.
        • Kabus S.
        • von Berg J.
        • Lorenz C.
        • Chung M.P.
        • Hong J.C.
        • et al.
        Reproducibility of four-dimensional computed tomography-based lung ventilation imaging.
        Acad Radiol. 2012; 19: 1554-1565
        • Du K.
        • Reinhardt J.M.
        • Christensen G.E.
        • Ding K.
        • Bayouth J.E.
        Respiratory effort correction strategies to improve the reproducibility of lung expansion measurements.
        Med Phys. 2013; 40
        • Du K.
        • Bayouth J.E.
        • Ding K.
        • Christensen G.E.
        • Cao K.
        • Reinhardt J.M.
        Reproducibility of intensity-based estimates of lung ventilation.
        Med Phys. 2013; 40
        • Vinogradskiy Y.Y.
        • Castillo R.
        • Castillo E.
        • Chandler A.
        • Martel M.K.
        • Guerrero T.
        Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy.
        Med Phys. 2012; 39: 289-298
        • Glenny R.W.
        Determinants of regional ventilation and blood flow in the lung.
        Intensive Care Med. 2009; 35: 1833-1842
        • Nakajima Y.
        • Kadoya N.
        • Kimura T.
        • Hioki K.
        • Jingu K.
        • Yamamoto T.
        Variations between dose-ventilation and dose-perfusion metrics in radiation therapy planning for lung cancer.
        Adv Radiat Oncol. 2020; 5: 459-465