Realistic 3D printed CT imaging tumor phantoms for validation of image processing algorithms

Published:December 28, 2022DOI:


      • CT tumor phantoms with complex density heterogeneity and geometry were developed.
      • Filament printing technology was used for 3D printing of the phantoms.
      • A density range between −217 to 226 HUs was achieved.
      • Life-like heterogeneity of the radiodensity inside the tumor phantoms could be simulated.


      Medical imaging phantoms are widely used for validation and verification of imaging systems and algorithms in surgical guidance and radiation oncology procedures. Especially, for the performance evaluation of new algorithms in the field of medical imaging, manufactured phantoms need to replicate specific properties of the human body, e.g., tissue morphology and radiological properties. Additive manufacturing (AM) technology provides an inexpensive opportunity for accurate anatomical replication with customization capabilities. In this study, we proposed a simple and cheap protocol using Fused Deposition Modeling (FDM) technology to manufacture realistic tumor phantoms based on the filament 3D printing technology. Tumor phantoms with both homogenous and heterogeneous radiodensity were fabricated. The radiodensity similarity between the printed tumor models and real tumor data from CT images of lung cancer patients was evaluated. Additionally, it was investigated whether a heterogeneity in the 3D printed tumor phantoms as observed in the tumor patient data had an influence on the validation of image registration algorithms.
      A radiodensity range between −217 to 226 HUs was achieved for 3D printed phantoms using different filament materials; this range of radiation attenuation is also observed in the human lung tumor tissue. The resulted HU range could serve as a lookup-table for researchers and phantom manufactures to create realistic CT tumor phantoms with the desired range of radiodensities. The 3D printed tumor phantoms also precisely replicated real lung tumor patient data regarding morphology and could also include life-like heterogeneity of the radiodensity inside the tumor models. An influence of the heterogeneity on accuracy and robustness of the image registration algorithms was not found.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kiarashi N.
        • Nolte A.C.
        • Sturgeon G.M.
        • Segars W.P.
        • Ghate S.V.
        • Nolte L.W.
        • et al.
        Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data.
        Med Phys. 2015; 42: 4116-4126
        • Hatamikia S.
        • et al.
        Additively manufactured patient-specific anthropomorphic thorax phantom with realistic radiation attenuation properties.
        Front Bioeng Biotechnol. 2020; 8: 385
        • Mayer R.
        • Liacouras P.
        • Thomas A.
        • Kang M.
        • Lin L.
        • Simone C.B.
        3D printer generated thorax phantom with mobile tumor for radiation dosimetry.
        Rev Sci Instrum. 2015; 86074301
        • Ehler E.D.
        • Barney B.M.
        • Higgins P.D.
        • Dusenbery E.
        Patient specific 3D printed phantom for IMRT quality assurance.
        Phys Med Biol. 2014; 59: 5763-5773
      1. Hatamikia S, Kronreif G, Unger A, Oberoi G, Jaksa L, Unger E, Koschitz S, Gulyas I, Irnstorfer N, Buschmann M, Kettenbach J, Birkfellner W, Lorenz A. 3D printed patient-specific thorax phantom with realistic heterogenous bone radiopacity using filament printer technology. Z Med Phys. 2022 Feb 24:S0939-3889(22)00007-1. doi: 10.1016/j.zemedi.2022.02.001. Epub ahead of print. PMID: 35221154.

        • Buytaert D.
        • Taeymans Y.
        • De Wolf D.
        • Bacher K.
        Evaluation of a no-reference image quality metric for projection X-ray imaging using a 3D printed patient-specific phantom.
        Phys Med. 2021 Sep; 89 (Epub 2021 Jul 31 PMID: 34343764): 29-40
        • Deene Y.
        • Wheatley M.
        • Greig T.
        • Hayes D.
        • Ryder W.
        • Loh H.
        A multi-modality medical imaging head and neck phantom: Part 1. Design and fabrication.
        Phys Med. 2022 Apr; 96 (Epub 2022 Feb 19 PMID: 35190265): 166-178
        • Filippou V.
        • Tsoumpas C.
        Recent advances on the development of phantoms using 3D printing for imaging with CT, MRI, PET, SPECT, and ultrasound.
        Med Phys. 2018; 45: 740-760
        • Homolka P.
        • Figl M.
        • Wartak A.
        • Glanzer M.
        • Dünkelmeyer M.
        • Hojreh A.
        • et al.
        Design of a head phantom produced on a 3D rapid prototyping printer and comparison with a RANDO and 3 M lucite head phantom in eye dosimetry applications.
        Phys Med Biol. 2017; 62: 3158-3174
        • Niebuhr N.I.
        • Johnen W.
        • Güldaglar T.
        • Runz A.
        • Echner G.
        • Mann P.
        • et al.
        Technical note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for mr-guided radiotherapy.
        Med Phys. 2016; 43: 908-916
        • Tino R.
        • Yeo A.
        • Leary M.
        • Brandt M.
        • Kron T.
        A systematic review on 3D-printed imaging and dosimetry phantoms in radiation therapy Technol.
        Cancer Res Treat. 2019; 18
        • Bliznakova K.
        • Dukov N.
        • Feradov F.
        • Gospodinova G.
        • Bliznakov Z.
        • Russo P.
        • et al.
        Development of breast lesions models database.
        Phys Med. 2019 Aug; 64 (Epub 2019 Aug 3 PMID: 31387779): 293-303
        • Dukov N.
        • Bliznakova K.
        • Feradov F.
        • Buliev I.
        • Bosmans H.
        • Mettivier G.
        • et al.
        Models of breast lesions based on three-dimensional X-ray breast images.
        Phys Med. 2019 Jan; 57 (Epub 2018 Dec 27 PMID: 30738536): 80-87
      2. Okkalidis N. 3D printing methods for radiological anthropomorphic phantoms. Phys Med Biol. 2022 Jul 27;67(15). doi: 10.1088/1361-6560/ac80e7. PMID: 35830787.

        • Hazelaar C.
        • van Eijnatten M.
        • Dahele M.
        • Wolff J.
        • Forouzanfar T.
        • Slotman B.
        • et al.
        Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes.
        Med Phys. 2018; 45: 92-100
        • Kostiukhina N.
        • Georg D.
        • Rollet S.
        • Kuess P.
        • Sipaj A.
        • Andrzejewski P.
        • et al.
        Advanced Radiation DOSimetry phantom (ARDOS): a versatile breathing phantom for 4D radiation therapy and medical imaging.
        Phys Med Biol. 2017; 62: 8136-8153
        • Sramek M.
        • Shi Y.
        • Quintanilla E.
        • Wu X.
        • Ponukumati A.
        • et al.
        Tumor phantom for training and research in transoral surgery.
        Lary Inves Otolary. 2020; 16: 677-682
        • Rinaldi L.
        • Pezzotta F.
        • Santaniello T.
        • De Marco P.
        • Bianchini L.
        • Origgi D.
        • et al.
        HeLLePhant: A phantom mimicking non-small cell lung cancer for texture analysis in CT images.
        Phys Med. 2022 May; 97 (Epub 2022 Mar 22 PMID: 35334407): 13-24
      3. Dukov N, Bliznakova K, Okkalidis N, Teneva T, Encheva E, Bliznakov Z. Thermoplastic 3D printing technology using a single filament for producing realistic patient-derived breast models. Phys Med Biol. 2022 Feb 10;67(4). doi: 10.1088/1361-6560/ac4c30. PMID: 35038693.

        • Varallo A.
        • Sarno A.
        • Castriconi R.
        • Mazzilli A.
        • Loria A.
        • Del Vecchio A.
        • et al.
        Fabrication of 3D printed patient-derived anthropomorphic breast phantoms for mammography and digital breast tomosynthesis: Imaging assessment with clinical X-ray spectra.
        Phys Med. 2022 Jun; 98 (Epub 2022 May 5 PMID: 35526373): 88-97
        • Dancewicz O.L.
        • et al.
        Radiological properties of 3D printed materials in kilovoltage and megavoltage photon beams.
        Phys Medica. 2017; 38: 111-118
        • Solc J.
        • et al.
        Tissue-equivalence of 3D-printed plastics for medical phantoms in radiology.
        J Instruct. 2018; 13
        • Ivanov D.
        • Bliznakova K.
        • Buliev I.
        • Popov P.
        • Mettivier G.
        • Russo P.
        • et al.
        Suitability of low density materials for 3D printing of physical breast phantoms.
        Phys Med Biol. 2018 Sep 6; 63 (PMID: 29999497)175020

        • Furtado H.
        • Steiner E.
        • Stock M.
        • Georg D.
        • Birkfellner W.
        Real-time 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy.
        Acta Oncol. 2013; 52: 1464-1471
      5. Wolfgang Birkfellner1, Michael Figl, Hugo Furtado, Andreas Renner, Sepideh Hatamikia and Johann Hummel, Multi-Modality Imaging: A Software Fusion and Image-Guided Therapy Perspective. Front Phys 2018; 6: 66.

        • Ma X.
        • Figl M.
        • Unger E.
        • Buschmann M.
        • Homolka P.
        X-ray attenuation of bone, soft and adipose tissue in CT from 70 to 140 kV and comparison with 3D printable additive manufacturing materials.
        Sci Rep. 2022 Aug 26; 12: 14580 PMID: 36028638; PMCID: PMC9418162
      6. C. Militello, L. Rundo, M. Dimaco, A. Orlando,R. Woitek, et al., 3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients. Acad Radio 2021 (in press).

      7. N. Sharma, L.M. Aggarwal Automated medical image segmentation techniques. J Med Phys 2010; 35: 3-14. 10.4103/0971-6203.58777.

      8. JAKSA, Laszlo et al. Development of a Multi-Material 3D Printer for Functional Anatomic Models. International Journal of Bioprinting, [S.l.], v. 7, n. 4, p. 420, oct. 2021. ISSN 2424-8002.

        • Jaksa L.
        • Pahr D.
        • Kronreif G.
        • Lorenz A.
        Development of a Multi-Material 3D Printer for Functional Anatomic Models.
        Int J Bioprint. 2021 Oct 12; 7: 420 PMID: 34805598; PMCID: PMC8600298
      9. Hatamikia S, Oberoi G, Zacher A, Kronreif G, Birkfellner W, Kettenbach J, Ponti S, Lorenz A, Buschmann M, Jaksa L, Irnstorfer N, Unger E. Additively manufactured test phantoms for mimicking soft tissue radiation attenuation in CBCT using Polyjet technology. Z Med Phys. 2022 Jul 2:S0939-3889(22)00063-0. doi: 10.1016/j.zemedi.2022.05.002. Epub ahead of print. PMID: 35792011.