Advertisement
Research Article| Volume 106, 102529, February 2023

Out-of-field measurements and simulations of a proton pencil beam in a wide range of dose rates using a Timepix3 detector: Dose rate, flux and LET

Published:January 17, 2023DOI:https://doi.org/10.1016/j.ejmp.2023.102529

      Highlights

      • Customized Timepix3 detector for characterization of stray radiation in UHDR beams.
      • The deposited energy, DR, and LET spectra were measured.
      • LET spectra exhibits the same characteristics regardless of the delivered DR.
      • At higher beam intensities a rescaling of LET can be performed.
      • A linear response of measured deposited energy was obtained at various DRs.

      Abstract

      Stray radiation produced by ultra-high dose-rates (UHDR) proton pencil beams is characterized using ASIC-chip semiconductor pixel detectors. A proton pencil beam with an energy of 220 MeV was utilized to deliver dose rates (DR) ranging from conventional radiotherapy DRs up to 270 Gy/s. A MiniPIX Timepix3 detector equipped with a silicon sensor and integrated readout electronics was used. The chip-sensor assembly and chipboard on water-equivalent backing were detached and immersed in the water-phantom. The deposited energy, particle flux, DR, and the linear energy transfer (LET(Si)) spectra were measured in the silicon sensor at different positions both laterally, at different depths, and behind the Bragg peak. At low-intensity beams, the detector is operated in the event-by-event data-driven mode for high-resolution spectral tracking of individual particles. This technique provides precise energy loss response and LET(Si) spectra with radiation field composition resolving power. At higher beam intensities a rescaling of LET(Si) can be performed as the distribution of the LET(Si) spectra exhibits the same characteristics regardless of the delivered DR. The integrated deposited energy and the absorbed dose can be thus measured in a wide range. A linear response of measured absorbed dose was obtained by gradually increasing the delivered DR to reach UHDR beams. Particle tracking of scattered radiation in data-driven mode could be performed at DRs up to 0.27 Gy/s. In integrated mode, the saturation limits were not reached at the measured out-of-field locations up to the delivered DR of over 270 Gy/s. A good agreement was found between measured and simulated absorbed doses.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Favaudon V.
        • Caplier L.
        • Monceau V.
        • Pouzoulet F.
        • Sayarath M.
        • Fouillade C.
        • et al.
        Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice.
        Sci Transl Med. 2014; 6
      1. Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold? Front Oncol 2020;9. https://doi.org/10.3389/fonc.2019.01563.

        • Esplen N.
        • Mendonca M.S.
        • Bazalova-Carter M.
        Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review.
        Phys Med Biol. 2020; 65: 23TR03
      2. Vozenin MC, De Fornel P, Petersson K, Favaudon V, Jaccard M, Germond JF, et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin Cancer Res. 2019;25(1):35-42. doi: 10.1158/1078-0432.CCR-17-3375.

        • Simmons D.A.
        • Lartey F.M.
        • Schüler E.
        • Rafat M.
        • King G.
        • Kim A.
        • et al.
        Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation.
        Radiother Oncol. 2019; 139: 4-10
        • Small K.L.
        • Henthorn N.T.
        • Angal-Kalinin D.
        • Chadwick A.L.
        • Santina E.
        • Aitkenhead A.
        • et al.
        Evaluating very high energy electron RBE from nanodosimetric pBR322 plasmid DNA damage.
        Sci Rep. 2021; 11https://doi.org/10.1038/s41598-021-82772-6
        • Colangelo N.W.
        • Azzam E.I.
        The importance and clinical implications of FLASH ultra-high dose-rate studies for proton and heavy ion radiotherapy.
        Radiat Res. 2020; 193: 1-4https://doi.org/10.1667/RR15537.1
        • Diffenderfer E.S.
        • Verginadis I.I.
        • Kim M.M.
        • Shoniyozov K.
        • Velalopoulou A.
        • Goia D.
        • et al.
        Design, implementation, and in vivo validation of a novel proton FLASH radiation therapy system.
        Int J Radiat Oncol Biol Phys. 2020; 106: 440-448https://doi.org/10.1016/j.ijrobp.2019.10.049
        • Patriarca A.
        • Fouillade C.
        • Auger M.
        • Martin F.
        • Pouzoulet F.
        • Nauraye C.
        • et al.
        Experimental set-up for FLASH proton irradiation of small animals using a clinical system.
        Int J Radiat Oncol Biol Phys. 2018; 102: 619-626
        • Yin L.
        • Zou W.
        • Kim M.M.
        • Avery S.M.
        • Wiersma R.D.
        • Teo B.-K.
        • et al.
        Evaluation of two-voltage and three-voltage linear methods for deriving ion recombination correction factors in proton FLASH irradiation.
        IEEE Trans Radiat Plasma Med Sci. 2022; 6: 263-270
        • McManus M.
        • Romano F.
        • Lee N.D.
        • Farabolini W.
        • Gilardi A.
        • Royle G.
        • et al.
        The challenge of ionisation chamber dosimetry in ultra-short pulsed high dose-rate Very High Energy Electron beams.
        Sci Rep. 2020; 10https://doi.org/10.1038/s41598-020-65819-y. PMID: 32493952; PMCID: PMC7270129
        • Jolly S.
        • Owen H.
        • Schippers M.
        • Welsch C.
        Technical challenges for FLASH proton therapy.
        Phys Medica: Eur J Med Phys. 2020; 78: 71-82https://doi.org/10.1016/J.EJMP.2020.08.005
        • Schüller A.
        • Heinrich S.
        • Fouillade C.
        • Subiel A.
        • De Marzi L.
        • Romano F.
        • et al.
        The European Joint Research Project UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates.
        Phys Med. 2020; 80: 134-150
      3. AAPM COMMITTEE TREE, https://www.aapm.org/org/structure/default.asp?committee_code=TG359; 2022 [accessed 13 March 2022].

      4. Poikela T, Plosila J, Westerlund T, Campbell M, Gaspari M, Llopart X, et al. Timepix3: a 65 K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. JINST. 2014;9: C05013. doi: 10.1088/1748-0221/9/05/C05013.

        • Parisi A.
        • Chiriotti S.
        • De Saint-Hubert M.
        • Van Hoey O.
        • Vandevoorde C.
        • Beukes P.
        • et al.
        A novel methodology to assess linear energy transfer and relative biological effectiveness in proton therapy using pairs of differently doped thermoluminescent detectors.
        Phys Med Biol. 2019; 64: 085005
        • Stolarczyk L.
        • Trinkl S.
        • Romero-Expósito M.
        • Mojżeszek N.
        • Ambrozova I.
        • Domingo C.
        • et al.
        Dose distribution of secondary radiation in a water phantom for a proton pencil beam-EURADOS WG9 intercomparison exercise.
        Phys Med Biol. 2018; 63: 085017
        • Šolc J.
        • Vondráček V.
        • Vykydal Z.
        • Králík M.
        Neutron spectral fluence and dose distribution inside a NYLON 6 phantom irradiated with pencil beam of high energy protons.
        Radiat Meas. 2018; 109: 13-23
        • Tran L.T.
        • Bolst D.
        • James B.
        • Pan V.
        • Vohradsky J.
        • Peracchi S.
        • et al.
        Silicon 3D microdosimeters for advanced quality assurance in particle therapy.
        Appl Sci. 2022; 12: 328
        • Oancea C.
        • Bălan C.
        • Pivec J.
        • Granja C.
        • Jakubek J.
        • Chvatil D.
        • et al.
        Stray radiation produced in FLASH electron beams characterized by the MiniPIX Timepix3 Flex detector.
        J Instrum. 2022; 17: C01003
      5. Yap JSL, Welsch CP, Brooke M D, Bal N J S, Oancea C, Granja C, et al. Tracking and LET measurements with the Minipix-Timepix detector for 60 MeV clinical protons. Proceedings of IPAC2021. 2021;1260–1263. Doi: https://doi.org/10.18429/JACoW-IPAC2021-MOPAB418.

        • Granja C.
        • Oancea C.
        • Jakubek J.
        • Marek L.
        • Benton E.
        • Kodaira S.
        • et al.
        Wide-range tracking and LET-spectra of energetic light and heavy charged particles.
        Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2021; 988: 164901
        • Stasica P.
        • Baran J.
        • Granja C.
        • Krah N.
        • Korcyl G.
        • Oancea C.
        • et al.
        A simple approach for experimental characterization and validation of proton pencil beam profiles.
        Front Phys. 2020; 8https://doi.org/10.3389/FPHY.2020.00346
        • Félix-Bautista R.
        • Gehrke T.
        • Ghesquière-Diérickx L.
        • Reimold M.
        • Amato C.
        • Turecek D.
        • et al.
        Experimental verification of a non-invasive method to monitor the lateral pencil beam position in an anthropomorphic phantom for carbon-ion radiotherapy.
        Phys Med Biol. 2019; 64: 175019
        • Granja C.
        • Jakubek J.
        • Polansky S.
        • Zach V.
        • Krist P.
        • Chvatil D.
        • et al.
        Resolving power of pixel detector Timepix for wide-range electron, proton and ion detection.
        Nucl Instrum Methods Phys Res, Sect A. 2018; 908: 60-71
        • Granja C.
        • Krist P.
        • Chvatil D.
        • Solc J.
        • Pospisil S.
        • Jakubek J.
        • et al.
        Energy loss and online directional track visualization of fast electrons with the pixel detector Timepix.
        Radiat Meas. 2013; 59: 245-261
        • Gehrke T.
        • Amato C.
        • Berke S.
        • Martišíková M.
        Theoretical and experimental comparison of proton and helium-beam radiography using silicon pixel detectors.
        Phys Med Biol. 2018; 63https://doi.org/10.1088/1361-6560/aaa60f
        • Biegun A.K.
        • Visser J.
        • Klaver T.
        • Ghazanfari N.
        • van Goethem M.-J.
        • Koffeman E.
        • et al.
        Proton radiography with timepix based time projection chambers.
        IEEE Trans Med Imaging. 2016; 35: 1099-1105
        • Olsansky V.
        • Granja C.
        • Oancea C.
        • Mackova A.
        • Havranek V.
        • Chvatil D.
        • et al.
        Spectral-sensitive proton radiography of thin samples with the pixel detector Timepix3.
        JINST. 2022; 17: C04016
        • Turecek D.
        • Pinsky L.
        • Jakubek J.
        • Vykydal Z.
        • Stoffle N.
        • Pospisil S.
        Small dosimeter based on timepix device for international space station.
        J Instrum. 2011; 6: C12037-C
        • Granja C.
        • Pospisil S.
        Quantum dosimetry and online visualization of X-ray and charged particle radiation in aircraft at operational flight altitudes with the pixel detector Timepix.
        Adv space Res. 2014; : 241-251https://doi.org/10.1016/j.asr.2014.04.006
      6. ADVACAM s.r.o Company. Detectors specifications, https://advacam.com/minipix/; 2022 [accessed 13 March 2022].

        • Jakubek J.
        Precise energy calibration of pixel detector working in timeover–threshold mode.
        Nucl Instrum Methods Phys Res A. 2011; : 262-266https://doi.org/10.1016/j.nima.2010.06.183
        • Campbell M.
        • Heijne E.
        • Holý T.
        • Idárraga J.
        • Jakůbek J.
        • Lebel C.
        • et al.
        Study of the charge sharing in a silicon pixel detector by means of α-particles interacting with a Medipix2 device.
        Nucl Instrum Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2008; 591: 38-41
        • Werner C.J.
        MCNP® User’s Manual, Code Version 6.2.
        Los Alamos National Laboratory LA-UR-17-29981, 2017
        • Trellue H.
        • Little R.
        • Lee M.B.
        New ACE-Formatted Neutron and Proton Libraries Based on ENDF/B-VII.0.
        Los Alamos National Laboratory LA-UR-08-1999, 2008
      7. Werner Ch J, Bull J S, Solomon CJ, Brown FB, McKinney GW, Rising ME, et al. MCNP Version 6.2 Release Notes, Los Alamos National Laboratory LA-UR-18-20808, 2018. doi: https://doi.org/10.2172/1419730.

        • Chadwick M.B.
        • Obložinský P.
        • Herman M.
        • Greene N.M.
        • McKnight R.D.
        • Smith D.L.
        • et al.
        ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology.
        Nucl Data Sheets. 2006; 107: 2931-3060
        • Adams K.J.
        Electron Upgrade for MCNP4B.
        Los Alamos National Laboratory, X-5-RN(U)-00-14, 2000
        • Conlin J.L.
        • Haeck W.
        • Neudecker D.
        • Parsons D.K.
        • White M.C.
        Release of ENDF/B-VIII.0-Based.
        ACE Data Files, Los Alamos National Laboratory LA-UR-18-24034, 2018
        • Granja C.
        • Jakubek J.
        • et al.
        MiniPIX Timepix3 — a miniaturized radiation camera with onboard data processing for online characterization of wide-intensity mixed-radiation field.
        J Instrum. 2022; 17: C03019https://doi.org/10.1088/1748-0221/17/03/C03019
        • Jakubek J.
        • Cejnarova A.
        • Holy T.
        • Pospisil S.
        • Uher J.
        • Vykydal Z.
        Pixel detectors for imaging with heavy charged particles.
        Nucl Instrum Methods Phys Res, Sect A. 2008; 591: 155-158https://doi.org/10.1016/j.nima.2008.03.091
        • Bergmann B.
        • Pichotka M.
        • Pospisil S.
        • Vycpalek J.
        • Burian P.
        • Broulim P.
        • et al.
        3D track reconstruction capability of a silicon hybrid active pixel detector.
        Eur Phys J C. 2017; 77: 421https://doi.org/10.1140/epjc/s10052-017-4993-4
        • Bolst D.
        • Guatelli S.
        • Tran L.T.
        • Chartier L.
        • Lerch M.L.F.
        • Matsufuji N.
        • et al.
        Correction factors to convert microdosimetry measurements in silicon to tissue in 12C ion therapy.
        Phys Med Biol. 2017; 62: 2055-2069
        • Bolst D.
        • Guatelli S.
        • Tran L.T.
        • Rosenfeld A.B.
        The impact of sensitive volume thickness for silicon on insulator microdosimeters in hadron therapy.
        Phys Med Biol. 2020; 65035004https://doi.org/10.1088/1361-6560/ab623f
        • Wroe A.
        • Rosenfeld A.
        • Schulte R.
        Out-of-field dose equivalents delivered by proton therapy of prostate cancer.
        Med Phys. 2007; 34: 3449-3456https://doi.org/10.1118/1.2759839
        • Chartier L.
        • Tran L.T.
        • Bolst D.
        • Guatelli S.
        • Pogossov A.
        • Prokopovich D.A.
        • et al.
        Microdosimetric applications in proton and heavy ion therapy using silicon microdosimeters.
        Radiat Prot Dosim. 2018; 180: 365-371https://doi.org/10.1093/rpd/ncx226
        • Pan V.A.
        • Pagani F.
        • James B.
        • Bolst D.
        • Peracchi V.J.
        • et al.
        Characterization of a novel large area microdosimeter system for low dose rate radiation environments.
        Nucl Instr Meth A. 2021; 1002https://doi.org/10.1016/j.nima.2021.165238
        • Petoussi-Henss N.
        • Bolch W.E.
        • Eckerman K.F.
        • Endo A.
        • Hertel N.
        • Hunt J.
        • et al.
        Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures.
        Ann ICRP. 2010; 40: 1-257https://doi.org/10.1016/j.icrp.2011.10.001
        • Granja C.
        • Kudela K.
        • Jakubek J.
        • Krist P.
        • Chvatil D.
        • Stursa J.
        • et al.
        Directional detection of charged particles and cosmic rays with the miniaturized radiation camera MiniPIX Timepix.
        Nucl Instrum Methods Phys Res, Sect A. 2018; : 142-152https://doi.org/10.1016/j.nima.2018.09.140
        • Šolc J.
        • Jakubek J.
        • Marek L.
        • Oancea C.
        • Pivec J.
        • Šmoldasová J.
        • et al.
        Monte Carlo modelling of pixel clusters in Timepix detectors using the MCNP code.
        Phys Med. 2022; : 79-86https://doi.org/10.1016/j.ejmp.2022.08.002
      8. Sommer M, Granja C, Kodaira S, Ploc O. High-energy per-pixel calibration of Timepix pixel detector with laboratory alpha source. Nucl Instrum Methods Phys Res Section A. 2022;165957. doi: https://doi.org/10.1016/j.nima.2021.165957.

        • Nabha R.
        • Hoey O.
        • Granja C.
        • Parisi A.
        • Saint-Hubert M.
        • Struelens L.
        • Oancea C.
        • et al.
        A novel method to assess the incident angle and the LET of protons using a compact single-layer Timepix detector.
        Radiat Phys Chem. 2022; https://doi.org/10.1016/j.radphyschem.2022.110349
        • Conte V.
        • Bianchi A.
        • Selva A.
        • Petringa G.
        • Cirrone G.A.P.
        • Parisi A.
        • et al.
        Microdosimetry at the CATANA 62 MeV proton beam with a sealed miniaturized TEPC.
        Phys Med. 2019; : 114-122https://doi.org/10.1016/j.ejmp.2019.06.011
        • Oancea C.
        • Luu A.
        • Ambrožová I.
        • Mytsin G.
        • Vondráček V.
        • Davídková M.
        Perturbations of radiation field caused by titanium dental implants in pencil proton beam therapy.
        Phys Med Biol. 2018; 63https://doi.org/10.1088/1361-6560/aae656
        • Charyyev S.
        • Chang C.W.
        • Harms J.
        • Oancea C.
        • Yoon S.T.
        • Yang X.
        • et al.
        A novel proton counting detector and method for the validation of tissue and implant material maps for Monte Carlo dose calculation.
        Phys Med Biol. 2021; 66https://doi.org/10.1088/1361-6560/ABD22E