Advertisement
Research Article| Volume 106, 102532, February 2023

A novel electron source for a compact x-ray tube for microbeam radiotherapy with very high dose rates

  • Christoph Matejcek
    Correspondence
    Correspondence to: Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, Johann-Joachim-Becher-Weg 45, 55128 Mainz, Germany.
    Affiliations
    Technical University of Munich, School of Medicine and Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany

    Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, Mainz, Germany
    Search for articles by this author
  • Johanna Winter
    Affiliations
    Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany

    Technical University of Munich, School of Medicine and Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany

    Technical University of Munich, Physics Department, Garching, Germany
    Search for articles by this author
  • Kurt Aulenbacher
    Affiliations
    Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, Mainz, Germany

    GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany

    Helmholtz-Institut Mainz, Germany
    Search for articles by this author
  • Anton Dimroth
    Affiliations
    Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA), Jülich, Germany

    RWTH Aachen University, Faculty of Mechanical Engineering, Aachen, Germany
    Search for articles by this author
  • Ghaleb Natour
    Affiliations
    Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and Analytics (ZEA), Jülich, Germany

    RWTH Aachen University, Faculty of Mechanical Engineering, Aachen, Germany
    Search for articles by this author
  • Stefan Bartzsch
    Affiliations
    Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, Neuherberg, Germany

    Technical University of Munich, School of Medicine and Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
    Search for articles by this author
Published:January 16, 2023DOI:https://doi.org/10.1016/j.ejmp.2023.102532

      Highlights

      • Line-focus x-ray tubes are suitable for clinical microbeam radiation therapy (MRT) with very high dose rates.
      • With tracking simulations, a suitable setup for an electron source and beamline was found.
      • Additional electrostatic simulations ensure fields sufficiently low to avoid a field breakdown.
      • Thermal simulations identified mechanical displacements after heating up the cathode, which must be compensated.

      Abstract

      Microbeam radiotherapy (MRT) is a novel concept in radiation oncology with arrays of alternating micrometer-wide high-dose peaks and low-dose valleys. Preclinical experiments have shown a lower normal tissue toxicity for MRT with similar tumor control rates compared to conventional radiotherapy. A promising candidate for the demanded compact radiation source is the line-focus x-ray tube. Here, we present the setup of a prototype for an electron accelerator being able to provide a suitable x-ray beam for the tube.
      Several beam dynamic calculations and simulations were performed concerning particle tracking, thermal and electrostatic properties of the electron source, resulting in a proper beamline, including the cathode, the pierce electrode (PE) and the focusing magnets. These parts are discussed separately.
      The simulations showed that a rectangular cathode with a small width of 0.4mm is mandatory. To quickly shut down the electron beam, an additional voltage of -600V must be applied to the PE. Moreover, the electric field inside the vacuum chamber stays below 10MVm−1 to minimize the risk of field emission. The thermal simulation validates a small displacement of 0.1mm of the heated cathode with respect to the PE, which must be considered during manufacturing of the cathode-PE assembly.
      The simulations lead to an adequate choice of cathode, electrodes and beamline to achieve the required focal spot of 0 . 05 × 20 mm 2 with a beam current of 0.3A and an electron energy of 300keV. With this setup first MRT experiments with high dose rates up to 10Gys−1 can be executed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Slatkin D.N.
        • Spanne P.O.
        • Dilmanian F.A.
        • Sandbora M.
        Microbeam radiation therapy.
        Med Phys. 1992; 19: 1395-1400https://doi.org/10.1118/1.596771
        • Bouchet A.
        • Bräuer E.
        • Prezado Y.
        • El Atifi M.
        • Rogalev L
        • Le Clec’h C
        • et al.
        Better efficacy of synchrotron spatially microfractionated radiation therapy than uniform radiation therapy on glioma.
        Int J Radiat Oncol Biol Phys. 2016; 95: 1485-1494https://doi.org/10.1016/j.ijrobp.2016.03.040
        • Smyth LML
        • Donoghue JF
        • Ventura JA
        • Livingstone J
        • Bailey T
        • Day LRJ
        • et al.
        Comparative toxicity of synchrotron and conventional radiation therapy based on total and partial body irradiation in a murine model.
        Sci Rep. 2018; 8: 1-11https://doi.org/10.1038/s41598-018-30543-1
        • Mohiuddin M
        • Fujita M
        • Regine WF
        • Megooni AS
        • Ibbott GS
        • Ahmed MM
        High-dose spatially-fractionated radiation (GRID): A new paradigm in the management of advanced cancers.
        Int J Radiat Oncol Biol Phys. 1999; 45: 721-727https://doi.org/10.1016/S0360-3016(99)00170-4
        • Schneider T.
        Technical aspects of proton minibeam radiation therapy: Minibeam generation and delivery.
        Phys Med. 2022; 100: 64-71https://doi.org/10.1016/j.ejmp.2022.06.010
        • Bartzsch S
        • Corde S
        • Crosbie JC
        • Day LRJ
        • Donzelli M
        • Krisch M
        • et al.
        Technical advances in X-ray microbeam radiation therapy.
        Phys Med Biol. 2020; 6502TR01https://doi.org/10.1088/1361-6560/ab5507
        • Bartzsch S.
        • Oelfke U.
        Line focus x-ray tubes—a new concept to produce high brilliance x-rays.
        Phys Med Biol. 2017; 62: 8600-8615https://doi.org/10.1088/1361-6560/aa910b
        • Winter J
        • Galek M
        • Matejcek C
        • Wilkens JJ
        • Aulenbacher K
        • Combs SE
        • Bartzsch S
        Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube.
        Phys Imaging Radiat Oncol. 2020; 14: 74-81
        • Kraus KM
        • Winter J
        • Zhang Y
        • Ahmed M
        • Combs SE
        • Wilkens JJ
        • Bartzsch S
        Treatment planning study for microbeam radiotherapy using clinical patient data.
        Cancers. 2022; 14https://doi.org/10.3390/cancers14030685
        • Ringler R.
        Physikalisch-technische grundlagen der röntgendiagnostik.
        in: Schlegel W Karger CP Jäkel O Medizinische physik. Springer Spektrum, Berlin, Heidelberg2018: 123-138https://doi.org/10.1007/978-3-662-54801-1_6
        • Wille K.
        Physik der teilchenbeschleuniger und synchrotronstrahlungsquellen.
        B.G. Teubner, Stuttgart1996
        • Matejcek C.
        Strahldynamik der niederenergie-strahlfürung von MESA unter berücksichtigung von raumladung und multipol-beiträgen höherer ordnung.
        (Ph.D. thesis) Johannes Gutenberg-Universität, Mainz2021
        • Wangler T.P.
        RF linear accelerators.
        WILEY-VCH, Weinheim2008
        • Technology Computer Simulation
        CST studio suite.
        2018 (Aachen, Deutschland. http://www.cst.com/)
      1. Sinclair CK, Dylla H, Siggins TL, Manos D, Wu L, Venhaus TJ. Dramatic reduction of DC field emission from large area electrodes by plasma-source ion implantation. In: PACS2001. Proceedings of the 2001 particle accelerator conference (cat. no. 01CH37268), Vol. 1. 2001, p. 610–2. http://dx.doi.org/10.1109/PAC.2001.987582.

      2. Giere S, Kurrat M, Schumann U. HV dielectric strength of shielding electrodes in vacuum circuit-breakers. In: 20th international symposium on discharges and electrical insulation in vacuum. 2002, p. 119–22. http://dx.doi.org/10.1109/ISDEIV.2002.1027323.

        • Ansys Inc.
        Ansys mechanical (version 2020 R2).
        2020 (Pennsylvania, USA. https://www.ansys.com/)
        • Schalles M.
        Berechnung des effektiven emissionsgrades von referenzstrahlen aus aluminiumoxid.
        in: 16. GMA/ITG-fachtagung sensoren und messsysteme 2012. 2012: 88-94https://doi.org/10.5162/sensoren2012/1.3.2
        • Limited Omega Engineering
        Emissivity of common materials.
        2021 ([accessed 8 Juni 2021]. https://www.omega.co.uk/literature/transactions/volume1/emissivitya.html#g)
      3. Cronin JL. Modern dispenser cathodes. In: IEE proceedings / solid state and electron devices, Vol. 128. 1981, p. 19–32. http://dx.doi.org/10.1049/ip-i-1.1981.0012.

      4. De DK, Olawole OC. Modification of Richardson-Dushman Therminonic Emission Current Density Equation for Nano-Materials. In: 3rd international conference on african development issues (CU-ICADI 2016). 2016, URL.

        • Bazarov I.V.
        • et al.
        Thermal emittance and response time measurements of negative electron affinity photocathodes.
        J Appl Phys. 2008;
        • Nishimori N
        • Nagai R
        • Hajima R
        • Yamamoto M
        • Honda Y
        • Miyajima T
        • Uchiyama T
        Operational experience of a 500 kV photoemission gun.
        Phys Rev Accel Beams. 2019; 22053402https://doi.org/10.1103/PhysRevAccelBeams.22.053402
        • Vassholz M
        • Koberstein-Schwarz B
        • Ruhlandt A
        • Krenkel M
        • Salditt T
        New X-ray tomography method based on the 3d radon transform compatible with anisotropic sources.
        Phys Rev Lett. 2016; 116088101
        • Grüner F
        • Blumendorf F
        • Schmutzler O
        • Staufer T
        • Bradbury M
        • Wiesner U
        • Rosentreter T
        • Loers G
        • Lutz D
        • Richter B
        • et al.
        Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects.
        Sci Rep. 2018; 8: 1-12