Highlights
- •Prostate cancer cells show different radiosensitivity than reference cells.
- •Radiosensitivity differences affect the final clinical dose distribution.
- •Prostate cancer cell-based clinical dose from one-directional irradiation is no longer flat.
- •Opposed left–right irradiation used in clinic improves this lack of flatness.
Abstract
Keywords
1. Introduction
2. Methods
2.1 Dose calculation methods used in clinical practice
where is the physical dose contribution of the th component of beam to voxel ; is the irradiation monitor unit (MU) of beam ; and and are the integral depth dose and Gaussian distribution of the th component at depth , respectively.

2.2 Cell culture and cell survival assay
2.3 Modeling of linear-quadratic coefficients for PC3 cells

Energy [MeV/u] | 73.3 | 80.0 | 86.4 | 104.8 | 157.2 | 430.0 |
---|---|---|---|---|---|---|
LET [keV/μ] @ 5.4 mm depth | 214.3 | 92.6 | 53.3 | 34.2 | 21.2 | 11.1 |
2.4 Validation of linear-quadratic coefficients in spread-out Bragg peak
2.5 Clinical dose calculation for computed tomography (CT)
3. Results
3.1 Linear energy transfer dependence of linear-quadratic coefficients for PC3 cells

X-rays | carbon beams | ||||||
---|---|---|---|---|---|---|---|
LET [keV/μ] | 1.0 | 11.1 | 21.2 | 34.2 | 53.5 | 92.6 | 214.3 |
α [Gy−1] | 0.302 ± 0.008 | 0.481 ± 0.036 | 0.610 ± 0.020 | 0.759 ± 0.028 | 1.069 ± 0.016 | 1.122 ± 0.024 | 1.199 ± 0.028 |
β [Gy−2] | 0.0417 ± 0.0049 |
3.2 Validation of LQ coefficients for PC3 cells in the SOBP
proximal | center | distal | ||
---|---|---|---|---|
Modeled LQ coefficients | dose-averaged α [Gy−1] | 0.675 | 0.752 | 0.902 |
dose-averaged β[Gy−2] | 0.045 | 0.047 | 0.050 | |
Experimental LQ coefficients | dose-averaged α [Gy−1] | 0.581 ± 0.019 | 0.802 ± 0.046 | 0.871 ± 0.028 |
dose-averaged β[Gy−2] | 0.070 ± 0.004 | 0.025 ± 0.010 | 0.056 ± 0.006 |
3.3 Clinical dose distribution in clinical cases

4. Discussion



Declaration of Competing Interest
Acknowledgments
Ethical statement
References
- Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.Int J Radiat Oncol Biol Phys. 1999; 44: 201-210
- Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3 He-, 12 C-and 20 Ne.Radiat Res. 2000; 154: 485-496
- A statistical theory of cell killing by radiation of varying linear energy transfer.Radiat Res. 1994; 140: 366-374
- A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications.Int J Radiat Biol. 1996; 69: 739-755https://doi.org/10.1080/095530096145481
- Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation.Phys Med Biol. 2008; 53: 37-59https://doi.org/10.1088/0031-9155/53/1/003
- Microdosimetric measurements and estimation of human cell survival for heavy-ion beams.Radiat Res. 2006; 166: 629-638
- Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model.Phys Med Biol. 2010; 55: 6721-6737https://doi.org/10.1088/0031-9155/55/22/008
- Computation of cell survival in heavy ion beams for therapy. The model and its approximation.Radiat Environ Biophys. 1997; 36: 59-66
Krämer M, Jäkel O, Haberer T, Kraft G, Schardt D, Weber U. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization. vol. 45. 2000.
- Heavy-ion tumor therapy: Physical and radiobiological benefits.Rev Mod Phys. 2010; 82: 383-425https://doi.org/10.1103/RevModPhys.82.383
- Radiation-induced damage in the central nervous system: An interpretation of target cell responses.Br J Cancer Suppl. 1986; 53: 207-217
- Impact of enhancements in the local effect model (LEM) on the predicted RBE-weighted target dose distribution in carbon ion therapy.Phys Med Biol. 2012; 57: 7261-7274https://doi.org/10.1088/0031-9155/57/22/7261
- Radiation tolerance of the rat spinal cord after 6 and 18 fractions of photons and carbon ions: Experimental results and clinical implications.Int J Radiat Oncol Biol Phys. 2006; 66: 1488-1497https://doi.org/10.1016/j.ijrobp.2006.08.045
- Treatment of chordomas with CyberKnife: Georgetown university experience and treatment recommendations.Neurosurgery. 2009; : 64https://doi.org/10.1227/01.NEU.0000341166.09107.47
- Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams.Int J Radiat Oncol Biol Phys. 2000; : 241-250
- A Consistent protocol reveals a large heterogeneity in the biological effectiveness of proton and carbon-ion beams for various sarcoma and normal-tissue-derived cell lines.Cancers (Basel). 2022; 14: 2009https://doi.org/10.3390/cancers14082009
- Optimization of carbon ion treatment plans by integrating tissue specific α/β-values for patients with non-resectable pancreatic cancer.PLoS One. 2016; : 11https://doi.org/10.1371/journal.pone.0164473
- Comparison of in vitro and in vivo α/β ratios for prostate cancer.Phys Med Biol. 2004; 49: 4477-4491https://doi.org/10.1088/0031-9155/49/19/003
- What do we know about the α/β for prostate cancer?.Med Phys. 2012; 39: 3189-3201https://doi.org/10.1118/1.4712224
- Clinical estimation of α/β values for prostate cancer from isoeffective phase III randomized trials with moderately hypofractionated radiotherapy.Acta Oncol (Madr). 2018; 57: 883-894https://doi.org/10.1080/0284186X.2018.1433874
- Physical and biological beam modeling for carbon beam scanning at Osaka Heavy Ion Therapy Center.J Appl Clin Med Phys. 2021; 22: 77-92https://doi.org/10.1002/acm2.13262
- Commissioning a newly developed treatment planning system, VQA Plan, for fast-raster scanning of carbon-ion beams.PLoS One. 2022; 17: e0268087
- Irradiation of mixed beam and design of spread-out bragg peak for heavy-ion radiotherapy.Radiat Res. 1997; 147: 78-85
- Design of ridge filters for spread-out Bragg peaks with Monte Carlo simulation in carbon ion therapy.Phys Med Biol. 2012; 57: 6615-6633https://doi.org/10.1088/0031-9155/57/20/6615
- PC3 is a cell line characteristic of prostatic small cell carcinoma.Prostate. 2011; 71: 1668-1679https://doi.org/10.1002/pros.21383
- Geant4 – a simulation toolkit.Nucl Instrum Methods Phys Res. 2003; A506: 250-303
- The PTSim and TOPAS projects, bringing geant4 to the particle therapy clinic.Progr Nucl Sci Technol. 2011; 2: 912-917
- Dependence and independence of survival parameters on linear energy transfer in cells and tissues.J Radiat Res. 2016; 57: 596-606https://doi.org/10.1093/jrr/rrw058
- Sublethal damage repair: Is it independent of radiation quality?.Int J Radiat Biol. 1979; 36: 521-530https://doi.org/10.1080/09553007914551311
- A phenomenological model for the relative biological effectiveness in therapeutic proton beams.Phys Med Biol. 2004; 49: 2811-2825https://doi.org/10.1088/0031-9155/49/13/004
- A model for the relative biological effectiveness of protons: The tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes.Acta Oncol (Madr). 2013; 52: 580-588https://doi.org/10.3109/0284186X.2012.705892
- Direct evaluation of radiobiological parameters from clinical data in the case of ion beam therapy: An alternative approach to the relative biological effectiveness.Phys Med Biol. 2014; 59: 7393-7417https://doi.org/10.1088/0031-9155/59/23/7393
- Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences.Japan Phys Med Biol. 2015; 60: 3271-3286https://doi.org/10.1088/0031-9155/60/8/3271
Leith JT, ’ L, Quaranto BA, ’ Giavanna Padpield BA, Michelson S, Hercbergs A. Radiobiological studies of PC-3 and DU-145 human prostate cancer cells: x-ray sensitivity in vitro and hypoxic fractions of xenografted tumors in vivo. Int J Radiat Oncol Biol Phys 1993;25:283–7.
- Incorporating clinical measurements of hypoxia into tumor local control modeling of prostate cancer: Implications for the α/β ratio.Int J Radiat Oncol Biol Phys. 2003; 57: 391-401https://doi.org/10.1016/S0360-3016(03)00534-0
- Fractionation and protraction for radiotherapy of prostate carcinoma.Int J Radiat Oncol Biol Phys. 1999; 43: 1095-1101
- Is the α/β value for prostate tumours low enough to be safely used in clinical trials?.Clin Oncol. 2007; 19: 289-301https://doi.org/10.1016/j.clon.2007.02.007
- Systematic analysis of RBE and related quantities using a database of cell survival experiments with ion beam irradiation.J Radiat Res. 2013; 54: 494-514https://doi.org/10.1093/jrr/rrs114
- Update of the particle irradiation data ensemble (PIDE) for cell survival.J Radiat Res. 2021; 62: 645-655https://doi.org/10.1093/jrr/rrab034
- A validated tumor control probability model based on a meta-analysis of low, intermediate, and high-risk prostate cancer patients treated by photon, proton, or carbon-ion radiotherapy.Med Phys. 2016; 43: 734-747https://doi.org/10.1118/1.4939260
- Hypoxia and radiation response in human tumors.Semin Radiat Oncol. 1996; 6: 3-9
- Hypoxia in cancer: Significance and impact on clinical outcome.Cancer Metastasis Rev. 2007; 26: 225-239https://doi.org/10.1007/s10555-007-9055-1
- Dose escalation to combat hypoxia in prostate cancer: A radiobiological study on clinical data.Br J Radiol. 2006; 79: 905-911https://doi.org/10.1259/bjr/18700614
- Hypoxia in prostate cancer: correlation of BOLD-MRI with pimonidazole immunohistochemistry-initial observations.Int J Radiat Oncol Biol Phys. 2007; 68: 1065-1071https://doi.org/10.1016/j.ijrobp.2007.01.018
- Hypoxia dose painting in prostate and cervix cancer.Acta Oncol (Madr). 2015; 54: 1259-1262https://doi.org/10.3109/0284186X.2015.1061692
- Kill-painting of hypoxic tumours in charged particle therapy.Sci Rep. 2015; 5: 17016https://doi.org/10.1038/srep17016
- Development and MPI tracking of novel hypoxia-targeted theranostic exosomes.Biomaterials. 2018; 177: 139-148https://doi.org/10.1016/j.biomaterials.2018.05.048
- Multifunctional hypoxia imaging nanoparticles: Multifunctional tumor imaging and related guided tumor therapy.Int J Nanomedicine. 2019; 14: 707-719https://doi.org/10.2147/IJN.S192048
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy