Advertisement
Research Article| Volume 107, 102540, March 2023

Download started.

Ok

Effects of incoming particle energy and cluster size on the G-value of hydrated electrons

Published:February 16, 2023DOI:https://doi.org/10.1016/j.ejmp.2023.102540

      Highlights

      • G-value was simulated with varying incoming electron energies and phantom sizes.
      • G-value of hydrated electrons decreases with increasing cluster size and LET.
      • GEANT4-DNA G-value simulations can be used for clinically relevant energies.

      Abstract

      In hydrated electron (e−aq) dosimetry, absorbed radiation dose to water is measured by monitoring the concentration of radiation-induced e−aq. However, to obtain accurate dose, the radiation chemical yield of e−aq, G(e−aq), is needed for the radiation quality/setup under investigation. The aim of this study was to investigate the time-evolution of the G-values for the main generated reactive species during water radiolysis using GEANT4-DNA. The effects of cluster size and linear energy transfer (LET) on G(e−aq) were examined. Validity of GEANT4-DNA for calculation of G(e−aq) for clinically relevant energies was studied. Three scenarios were investigated with different phantom sizes and incoming electron energies (1 keV to 1 MeV). The time evolution of G(e−aq) was in good agreement with published data and did not change with decreasing phantom size. The time-evolution of the G-values increases with increasing LET for all radiolytic species. The particle tracks formed with high-energy electrons are separated and the resulting reactive species develop independently in time. With decreasing energy, the mean separation distance between reactive species decreases. The particle tracks might not initially overlap but will overlap shortly thereafter due to diffusion of reactive species, increasing the probability of eaq recombination with other species. This also explains the decrease of G(e−aq) with cluster size and LET. Finally, if all factors are kept constant, as the incoming electron energy increases to clinically relevant energies, G(e−aq) remains similar to its value at 1 MeV, hence GEANT4-DNA can be used for clinically relevant energies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Samuel A.
        • Magee J.L.
        Theory of Radiation Chemistry. II. Track Effects in Radiolysis of Water.
        J Chem Phys. 1953; 21: 1080-1107https://doi.org/10.1063/1.1699113
        • Ledingham K.W.D.
        • Bolton P.R.
        • Shikazono N.
        • Ma C.M.C.
        Towards Laser Driven Hadron Cancer Radiotherapy: A Review of Progress.
        Appl Sci. 2014; 4: 402-443https://doi.org/10.3390/app4030402
        • Horne G.P.
        • Donoclift T.A.
        • Sims H.E.
        • Orr R.M.
        • Pimblott S.M.
        Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.
        J Chem Phys. 2016; 120: 11781-11789https://doi.org/10.1021/acs.jpcb.6b06862
        • Buxton G.
        • Greenstock C.
        • Helman W.
        Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals •OH/•O− in Aqueous Solution).
        J Phys Chem Ref Data. 1933; 17: 513https://doi.org/10.1063/1.555805
        • Draganic I.G.
        • Draganic Z.D.
        The Radiation Chemistry of Water.
        1st ed. Academic Press Inc, 1971
        • Peukert D.
        • Incerti S.
        • Kempson I.
        • Douglass M.
        • Karamitros M.
        • Baldacchino G.
        • et al.
        Validation and investigation of reactive species yields of Geant4-DNA chemistry models.
        Med Phys. 2019; : 46https://doi.org/10.1002/mp.13332
        • Hart E.J.
        • Fielden E.M.
        Procedures in Radiation Dosimetry: Liquid Chemical systems.
        in: Holm N.W. Berry R.J. Manual on Radiation Dosimetry. Marcel Dekker, New York1970: 331-335
        • Mégrourèche J.
        • Enger S.A.
        Development of a hydrated electron dosimeter for radiotherapy applications: A proof of concept.
        McGill Med Phys Unit: Master’s Thesis. 2019;
        • Baxendale J.H.
        • Busi F.
        The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis: Proceedings of the NATO Advanced Study Institute held ay Capri, Italy, 7–18 September, 1981.
        1st ed. Springer, Netherlands1981
      1. Elliot AJ, Bartels DM. The reaction set, rate constants and g-values for the simulation of the radiolysis of light water over the range 20 deg to 350 deg c based on information available in 2008. Atomic Energy of Canada Limited. 2009;41:AECL—153-127160-450-001.

        • Spinks J.W.T.
        • Woods R.J.
        An introduction to radiation chemistry.
        3rd ed. John-Wiley and Sons, New York, Toronto1990
        • Francis Z.
        • Villagrasa C.
        • Clairand I.
        Simulation of DNA damage clustering after proton irradiation using an adapted DBSCAN algorithm.
        Comput Methods Programs Biomed. 2011; 101: 265-270https://doi.org/10.1016/j.cmpb.2010.12.012
        • Shin W.G.
        • Ramos-Mendez J.
        • Faddegon B.
        • Tran H.N.
        • Villagrasa C.
        • Perrot Y.
        • et al.
        Evaluation of the influence of physical and chemical parameters on water radiolysis simulations under MeV electron irradiation using Geant4-DNA.
        J Appl Phys. 2019; 126114301https://doi.org/10.1063/1.5107511
        • Sultana A.
        • Meesungnoen J.
        • Jay-Gerin J.
        Yields of primary species in the low-linear energy transfer radiolysis of water in the temperature range of 25–700 deg c.
        PCCP. 2020; : 14https://doi.org/10.1039/D0CP00601G
        • Elliot A.J.
        • Chenier M.P.
        • Ouellette D.C.
        • Koslowsky V.T.
        Temperature Dependence of g Values for Aqueous Solutions Irradiated with 23 MeV 2H+ and 157 MeV 7Li3+ Ion Beams.
        J Phys Chem. 1996; 100: 9014-9020https://doi.org/10.1021/jp953593m
        • Paretzke H.G.
        Radiation track structure theory. Kinetics of Non-Homogeneous Processes, John Wiley Sons, 1987: 89-170
        • Uehara S.
        • Nikjoo H.
        • Goodhead D.T.
        Cross-sections for water vapour for monte carlo electron track structure code from 10 eV to 10 MeV region.
        Phys Med Biol. 1993; 38: 1841-1854https://doi.org/10.1088/0031-9155/38/12/010
        • Kramer M.
        • Kraft G.
        Track structure and DNA damage.
        Adv Space Res. 1994; 14: 151-159https://doi.org/10.1016/0273-1177(94)90465-0
        • Grosswendt B.
        On the equivalence of propane-based tissue-equivalent gas and liquid water with respect to the ionisation-yield formation by electrons and alpha-particles.
        Radiat Prot Dosim. 2002; 99: 401-404https://doi.org/10.1093/oxfordjournals.rpd.a006818
        • Valota A.
        • Ballarini F.
        • Friedland W.
        • Jacob P.
        • Ottolenghi A.
        • Paretzke H.G.
        Modelling study on the protective role of oh radical scavengers and DNA higher-order structures in induction of single- and double-strand break by gamma-radiation.
        Int J Radiat Biol. 2003; 79: 643-653https://doi.org/10.1080/09553000310001596977
        • Nikjoo H.
        • Uehara S.
        • Emfietzoglou D.
        • Cucinotta F.A.
        Track structure codes in radiation research.
        Radiat Meas. 2006; 41: 1052-1074https://doi.org/10.1016/j.radmeas.2006.02.001
        • Incerti S.
        • Baldacchino G.
        • Bernal M.
        • Capra R.
        • Champion C.
        • Francis Z.
        • et al.
        The Geant4-DNA project.
        Int J Model Simul Sci Comput. 2010; 1: 157-178https://doi.org/10.1142/S1793962310000122
        • Bernal M.A.
        • Bordage M.C.
        • Brown J.M.C.
        • Davidkova M.
        • Delage E.
        • Bitar Z.E.
        • et al.
        Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit.
        Phys Med. 2015; 31: 861-874https://doi.org/10.1016/j.ejmp.2015.10.087
        • Agostinelli S.
        • Allison J.
        • Amako K.
        • Apostolakis J.
        • Araujo H.
        • Arce P.
        • et al.
        Geant4—a simulation toolkit.
        Nucl Instrum Methods Phys Res, Sect A. 2003; 503: 250-303https://doi.org/10.1016/S0168-9002(03)01368-8
        • Tessaro V.B.
        • Gervais B.
        • Poignant F.
        • Beuve M.
        • Galassi M.E.
        Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values.
        Phys Med. 2021; 88: 71-85https://doi.org/10.1016/j.ejmp.2021.06.006
        • Nikjoo H.
        • Uehara S.
        • Wilson W.E.
        • Hoshi M.
        • Goodhead D.T.
        Track structure in radiation biology: theory and applications.
        Int J Radiat Biol. 1998; 73: 355-364https://doi.org/10.1080/095530098142176
        • Famulari G.
        • Pater P.
        • Enger S.A.
        Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm.
        Phys Med Biol. 2017; 62: 5495-5508https://doi.org/10.1088/1361-6560/aa71f6
        • Famulari G.
        • Pater P.
        • Enger S.A.
        Microdosimetric evaluation of current and alternative brachytherapy sources: A Geant4-DNA simulation study.
        Int J Radiat Oncol Biol Phys. 2018; 100: 270-277https://doi.org/10.1016/j.ijrobp.2017.09.040
        • McNamara A.L.
        • Geng C.
        • Turner R.
        • Ramos-Mendez J.
        • Perl J.
        • Held K.D.
        • et al.
        Validation of the radiobiology toolkit TOPAS-nBio in simple DNA geometries.
        Phys Med. 2017; 33: 207-215https://doi.org/10.1016/j.ejmp.2016.12.010
        • McNamara A.L.
        • Ramos-Mendez J.
        • Perl J.
        • Held K.D.
        • Dominguez N.
        • Moreno E.
        • et al.
        Geometrical structures for radiation biology research as implemented in the TOPAS-nBio toolkit.
        Phys Med Biol. 2018; 63175018https://doi.org/10.1088/1361-6560/aad8eb
        • Schuemann J.
        • McNamara A.L.
        • Ramos-Mendez J.
        • Perl J.
        • Held K.D.
        • Paganetti H.
        • et al.
        TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology.
        Radiat Res. 2019; 191: 125-138https://doi.org/10.1667/RR15226.1
        • Zhu H.
        • McNamara A.L.
        • McMahon S.J.
        • Ramos-Mendez J.
        • Henthorn N.T.
        • Faddegon B.
        Cellular Response to Proton Irradiation: A Simulation Study with TOPAS-nBio.
        Radiat Res. 2020; 194: 9-21https://doi.org/10.1667/RR15531.1
        • Kellerer A.M.
        Fundamentals of microdosimetry.
        in: Kase K.R. Bjarngard B.E. Attix F.H. The Dosimetry of Ionizing Radiation. 1st ed. Academic, New York1985: 77-162
        • Douglass M.
        • Penfold S.
        • Bezak E.
        Preliminary investigation of microdosimetric track structure physics models in Geant4-DNA and RITRACKS.
        Comput Math Methods Med. 2015; 968429https://doi.org/10.1155/2015/968429
        • Kreipl M.S.
        • Friedland W.
        • Paretzke H.G.
        Time- and space-resolved Monte Carlo study of water radiolysis for photon, electron and ion irradiation.
        Radiat Environ Biophys. 2009; 48: 11-20https://doi.org/10.1007/s00411-008-0194-8
        • Ramos-Mendez J.
        • Shin W.G.
        • Karamitros M.
        • Domínguez-Kondo J.
        • Tran N.H.
        • Incerti S.
        • et al.
        Independent reaction times method in Geant4-DNA: Implementation and performance.
        Med Phys. 2020; 47: 5919-5930https://doi.org/10.1002/mp.14490
        • Bartels D.M.
        • Cook A.R.
        • Mudaliar M.
        • Jonah C.D.
        Spur decay of the solvated electron in picosecond radiolysis measured with time-correlated absorption spectroscopy.
        Chem A Eur J. 2020; 104: 1686-1691https://doi.org/10.1021/jp992723e
        • Omar A.K.E.
        • Schmidhammer U.
        • Jeunesse P.
        • Larbre J.P.
        • Lin M.
        • Muroya Y.
        • et al.
        Time-Dependent Radiolytic Yield of OH Radical Studied by Picosecond Pulse Radiolysis.
        Chem A Eur J. 2011; 115: 12212-12216https://doi.org/10.1021/jp208075v
        • Wang F.
        • Schmidhammer U.
        • Larbre J.-P.
        • Zong Z.
        • Marigniera J.-L.
        • Mostafavi M.
        Time-dependent yield of the hydrated electron and the hydroxyl radical in D$_2$O: a picosecond pulse radiolysis study.
        PCCP. 2018; 20: 15671-15679https://doi.org/10.1039/C8CP02276C
        • Yoshida H.
        • Bolch W.E.
        • Jacobson K.B.
        • Turner J.E.
        Measurement of Free Ammonia Produced by X Irradiation of Glycylglycine in Aqueous Solution.
        Radiat Res. 1990; 121: 257-261https://doi.org/10.2307/3577774
        • Ramos-Mendez J.
        • Perl J.
        • Schuemann J.
        • McNamara A.
        • Paganetti H.
        • Faddegon B.
        Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio.
        Phys Med Biol. 2018; 63105014https://doi.org/10.1088/1361-6560/aac04c
        • Pimblott S.M.
        • LaVerne J.A.
        Effect of electron energy on the radiation chemistry of liquid water.
        Radiat Res. 1998; 150: 159-169https://doi.org/10.2307/3579851
        • Incerti S.
        • Kyriakou I.
        • Bernal M.A.
        • Bordage M.C.
        • Francis Z.
        • Guatelli S.
        • et al.
        Geant4-DNA example applications for track structure simulations in liquid water: A report from the Geant4-DNA Project.
        Med Phys. 2018; 45: 722-739https://doi.org/10.1002/mp.13048
        • Tran H.N.
        • Ramos-Mendez J.
        • Shin W.-G.
        • Perrot Y.
        • Faddegon B.
        • Okada S.
        • et al.
        Assessment of DNA damage with an adapted independent reaction time approach implemented in Geant4-DNA for the simulation of diffusion-controlled reactions between radio-induced reactive species and a chromatin fiber.
        Med Phys. 2021; 48: 890-901https://doi.org/10.1002/mp.14612
      2. Root: analyzing petabytes of data, scientifically: an open-source data analysis framework used by high energy physics and others. Root: Data Analysis Framework, https://root.cern/; 2020 [accessed 2020].

        • Laverne J.A.
        • Pimblott S.M.
        Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water: examination of experiments and models.
        J Phys Chem. 1991; 95: 3196-3206https://doi.org/10.1021/j100161a044
        • Pimblott S.M.
        • LaVerne J.A.
        • Bartels D.M.
        • Jonah C.D.
        Reconciliation of Transient Absorption and Chemically Scavenged Yields of the Hydrated Electron in Radiolysis.
        J Phys Chem. 1996; 100: 9412-9415https://doi.org/10.1021/jp960816f
        • Tomita H.
        • Kai M.
        • Kusama T.
        • Ito A.
        Monte Carlo simulation of physicochemical processes of liquid water radiolysis.
        Radiat Environ Biophys. 1997; 36: 105-116https://doi.org/10.1007/s004110050061
        • Fulford J.
        • Bonner P.
        • Goodhead D.
        • Hill A.A.
        • O’Neill P.
        Experimental Determination of the Dependence of OH Radical Yield on Photon Energy: A Comparison with Theoretical Simulations.
        Chem A Eur J. 1999; 103: 11345-11349https://doi.org/10.1021/JP993087N
        • Klassen N.V.
        • Ross C.K.
        Water calorimetry: The heat defect.
        J Res Natl Inst Stand Technol. 1997; 102: 63-74https://doi.org/10.6028/jres.102.006
      3. Geant4 10.6 Software Release Notes. Geant4 Simulation Toolkit, https://geant4.web.cern.ch/node/1837; 2019 [accessed 2019].

      4. Geant4 10.5 Software Release Notes. Geant4 Simulation Toolkit, https://geant4.web.cern.ch/node/1765; 2018 [accessed 2018].

        • LaVerne J.A.
        • Štefanić I.
        • Pimblott S.M.
        Hydrated Electron Yields in the Heavy Ion Radiolysis of Water.
        Chem A Eur J. 2005; 109: 9393-9401https://doi.org/10.1021/jp0530303
        • Karamitros M.
        • Luan S.
        • Bernal M.A.
        • Allison J.
        • Baldacchio G.
        • Incerti S.
        • et al.
        Diffusion-controlled reactions modeling in Geant4-DNA.
        J Comput Phys. 2014; 274: 841-882https://doi.org/10.1016/j/jcp.2014.06.011
        • Sato T.
        • Tsuda S.
        • Sakamoto Y.
        • Yamaguchi Y.
        • Niita K.
        Analysis of dose-LET distribution in the human body irradiated by high energy hadrons.
        Radiat Prot Dosim. 2003; 106: 145-153https://doi.org/10.1093/oxfordjournals.rpd.a006344
        • National Research Council
        Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2.
        The National Academies Press, Washington DC2006
        • Backstrom G.
        Protons, other Light Ions, and 60Co Photons: Study of Energy Deposit Clustering via Track Structure Simulations.
        Acta Univ Upsaliensis Uppsala. 2013; : 53004762
        • Elliot A.J.
        • Chenier M.P.
        • Ouellette D.C.
        g-Values for gamma -irradiated water as a function of temperature.
        Can J Chem. 1990; 68: 712-719https://doi.org/10.1139/v90-111