Highlights
- •The efficiency of novel equipment to protect the staff in interventional cardiology, and particularly the eye lens and the brain, was investigated.
- •The dose reduction effectiveness of the caps, masks and drapes strongly depends on the design, exposure conditions and staff position.
- •Independent testing of radioprotective devices in realistic conditions of use is recommended.
Abstract
Purpose
Methods
Results
Conclusion
Keywords
Introduction
- Zanca F.
- Dabin J.
- Collard C.
- Alexandre N.
- De Groote A.
- Salembier J.P.
- et al.
- Zanca F.
- Dabin J.
- Collard C.
- Alexandre N.
- De Groote A.
- Salembier J.P.
- et al.
Material and methods
Interventional cardiology setup
Examination settings | Values |
---|---|
Use of RP device | With - without |
Beam projections | PA, LAO45, LAO90, RAO45, RAO90 |
Operatoŕs distance from the X-ray field | 40 and 70 cm |
Operatoŕs head orientation | forward (0°) and 30° away from the X-ray tube |
Field size at the detector (cm) | 30 × 30: PA, LAO45 and RAO45 20 × 20: LLAT and RLAT |
X-ray energy spectrum | 80 kV, 3 mm Al |
Source-to-patient-skin entrance distance (cm) | 60 |
Source-to-image-detector distance (cm) | 90 |
Patient-to-image-detector distance (cm) | 10 |
Numerical phantoms
Lombardo PA et al.. D9.104: Database of phantom of different statures and postures. 2018. Available at https://www.concert-h2020.eu/en/Publications under D9.104.
RP device | Organs of interest | Phantom |
---|---|---|
Mask | Brain tissue; Eye lens | Mathematical phantom 21 , 22 , 23 + voxelised head [24] + detailed eye lens model [21] as per [14] |
Lead-free and leaded caps | Brain tissue | Same as for the mask |
RP drapes | All organs not covered by the apron Brain tissue; Eye lens | Mathematical phantom 20 , 21 with hands on the patientSame as for the mask |
Lead-free and light-lead aprons | All organs under the apron | ICRP male phantom [26] equipped with an apron [27] |
Zero-Gravity system | All organs | Voxelised flexible phantom 28 , 29 Lombardo PA et al.. D9.104: Database of phantom of different statures and postures. 2018. Available at https://www.concert-h2020.eu/en/Publications under D9.104. |

Modelling of the radioprotective devices
Masks

Caps

Patient drapes

Staff lead and non-lead aprons
Apron | Composition | Density | Thickness (mm) |
---|---|---|---|
Lead apron (LA) | Pb | 11.35 | 0.5 |
Lead-free apron 1 (LFA1) | Sb + Bi | 4.8 | 0.5 |
Lead-free apron 2 (LFA2) | Sb + Bi | 3.3 | 1.2 |
Zero-Gravity suspended radiation protection system
Lombardo PA et al.. D9.104: Database of phantom of different statures and postures. 2018. Available at https://www.concert-h2020.eu/en/Publications under D9.104.

Monte Carlo simulations settings and data analysis
Phantom measurements
- Zanca F.
- Dabin J.
- Collard C.
- Alexandre N.
- De Groote A.
- Salembier J.P.
- et al.

Results
Masks
Mask M1 | Mask M2 | |||||||
---|---|---|---|---|---|---|---|---|
Left lower rim | Right lower rim | Left higher rim | Right higher rim | Left lower rim | Right lower rim | Left higher rim | Right higher rim | |
70 cm | 76 % | 80 % | 82 % | 76 % | 81 % | 77 % | 84 % | 65 % |
40 cm | 82 % | 82 % | 87 % | 81 % | 90 % | 83 % | 90 % | 78 % |

Anatomical region | PA | LAO 30 | LLAT | RAO 30 |
---|---|---|---|---|
Brain* | 33 % | 42 % | 50 % | 46 % |
Brain including cerebellum | 5 % | 14 % | 17 % | 14 % |
Head | 12 % | 15 % | 20 % | 16 % |
Left temple | 43 % | 38 % | 68 % | – |
Left eye lens | 10 % | 10 % | 0 % | – |
Right eye lens | – | 9 % | −2% | – |

Caps
Whole brain (head 0°) | Whole brain (head 30°) | Left eye lens (head 0°) | Hp(3) dosemeter (head 0°) | ||||||
---|---|---|---|---|---|---|---|---|---|
Lead cap | Lead-free cap | Lead cap | Lead-free cap | Lead cap | Lead-free cap | Lead cap | Lead-free cap | ||
70 cm | 37 % | 39 % | 55 % | 51 % | 1 % | 0.6 % | 1.6 % | 0.8 % | |
40 cm | 14 % | 13 % | 30 % | 28 % | 0.4 % | 0.3 % | 0.9 % | 0.3 % |


Aprons
Lead apron | Lead-free apron 1 | Lead-free apron 2 | |||||
---|---|---|---|---|---|---|---|
Effective dose | Dosimeters | Effective dose | Dosimeters | Effective dose | Dosimeters | ||
70 cm | PA | 82% | 86% | 79% | 84% | 80% | 87% |
LAO45 | 83% | 81% | 80% | 79% | 81% | 79% | |
RAO45 | 84% | 91% | 80% | 90% | 82% | 90% | |
LLAT | 81% | 34% | 77% | 30% | 78% | 33% | |
RLAT | 75% | 93% | 71% | 91% | 73% | 92% | |
40 cm | PA | 93% | 93% | 90% | 91% | 91% | 91% |
LAO45 | 93% | 93% | 91% | 92% | 92% | 92% | |
RAO45 | 96% | 98% | 92% | 97% | 94% | 98% | |
LLAT | 92% | 85% | 90% | 80% | 92% | 92% | |
RLAT | 86% | 96% | 82% | 95% | 84% | 96% |
Effectiveness 70 cm | Effectiveness 40 cm | Effectiveness 40 cm / Effectiveness 70 cm | |
---|---|---|---|
Colon | 97 % | 98 % | 1.0 |
Lungs | 47 % | 75 % | 1.6 |
Stomach | 92 % | 95 % | 1.0 |
Breast | 96 % | 97 % | 1.0 |
Gonads | 99 % | 100 % | 1.0 |
Bladder | 99 % | 99 % | 1.0 |
Œsophagus | 63 % | 83 % | 1.3 |
Liver | 93 % | 97 % | 1.0 |
Brain | 4 % | 30 % | 7.4 |
Salivary glands | 19 % | 49 % | 2.5 |
Intestine | 97 % | 98 % | 1.0 |
Heart | 72 % | 89 % | 1.2 |
Kidneys | 95 % | 96 % | 1.0 |
Prostate | 99 % | 99 % | 1.0 |
Spleen | 81 % | 88 % | 1.1 |
Patient drapes
40 cm | 70 cm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PA | LAO45 | RAO45 | LLAT | RLAT | Mean | PA | LAO45 | RAO45 | LLAT | RLAT | Mean | |
Forearm skin (left) | 4 % | 3 % | 10 % | 0 % | 8 % | 5 % | 18 % | 19 % | 26 % | 3 % | 24 % | 18 % |
Forearm skin (right) | 19 % | 18 % | 24 % | 3 % | 27 % | 18 % | 12 % | 16 % | 20 % | 9 % | 13 % | 14 % |
Hand skin (left) | 64 % | 68 % | 72 % | 36 % | 71 % | 62 % | 21 % | 16 % | 22 % | 9 % | 24 % | 18 % |
Hand skin (right) | 30 % | 30 % | 37 % | 12 % | 40 % | 30 % | 8 % | 10 % | 9 % | 6 % | 7 % | 8 % |
Zero Gravity

Tissue | PA | LAO45 | LLAT | RAO45 | RLAT |
---|---|---|---|---|---|
Left lung | 40 % | 41 % | 46 % | 5 % | −18 % |
Right lung | 79 % | 80 % | 83 % | 73 % | 69 % |
Stomach | 71 % | 77 % | 76 % | 66 % | −18 % |
Large intestine | 90 % | 88 % | 88 % | 90 % | 48 % |
Heart | 73 % | 73 % | 75 % | 63 % | 60 % |
Brain (left) | 96 % | 96 % | 97 % | 95 % | 96 % |
Brain (right) | 97 % | 97 % | 98 % | 97 % | 97 % |
Thyroid | 90 % | 94 % | 88 % | 85 % | 93 % |
Testes | 65 % | 61 % | 55 % | 81 % | 76 % |
Left eye lens | 97 % | 97 % | 98 % | 98 % | 98 % |
Right eye lens | 98 % | 99 % | 99 % | 99 % | 99 % |
Effective dose | 77 % | 77 % | 75 % | 77 % | 82 % |
Discussion
Masks
Caps
Aprons
Patient drapes
Zero Gravity
- Zanca F.
- Dabin J.
- Collard C.
- Alexandre N.
- De Groote A.
- Salembier J.P.
- et al.
- Zanca F.
- Dabin J.
- Collard C.
- Alexandre N.
- De Groote A.
- Salembier J.P.
- et al.
Recommendations
Limitations of the study
Conclusion
Funding
Declaration of Competing Interest
References
- Radiation-Induced Lens Opacities among Interventional Cardiologists: Retrospective Assessment of Cumulative Eye Lens Doses.Radiat Res. 2018; 189: 399-408
- Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern?.Catheter Cardiovasc Interv. 2010; 76: 826-834https://doi.org/10.1002/ccd.22670
- Radiation cataract risk in interventional cardiology personnel.Radiat Res. 2010; 174: 490-495https://doi.org/10.1667/RR2207.1
- Cataract risk in US radiologic technologists assisting with fluoroscopically guided interventional procedures: a retrospective cohort study.Occup Environ Med. 2019; 76: 317-325https://doi.org/10.1136/oemed-2018-105360
- Brain tumours among interventional cardiologists: A cause for alarm? Report of four new cases from two cities and a review of the literature.EuroIntervention. 2012; 7: 1081-1086https://doi.org/10.4244/EIJV7I9A172
- Brain and neck tumors among physicians performing interventional procedures.Am J Cardiol. 2013; 111: 1368-1372
- The occupational effects of interventional cardiology: results from the WIN for Safety survey.EuroIntervention. 2012; 8 (PMID: 23086783): 658-663https://doi.org/10.4244/EIJV8I6A103
- Cancer risks in U.S. radiologic technologists working with fluoroscopically guided interventional procedures, 1994-2008.Am J Roentgenol. 2016; 206: 1101-1109
Dabin J, Domienik-Andrzejewska J, Huet C, Mirowski M, Vanhavere F. Report on effectiveness of protective devices for staff in interventional procedures. Deliverable 2.19, MEDIRAD project 2021. Available at : Documents download module (europa.eu).
- An investigation into the effect of protective devices on the dose to radiosensitive organs in the head and neck.Br J Radiol. 1992; 65 (PMID: 1393418): 799-802https://doi.org/10.1259/0007-1285-65-777- 799
- Efficacy of MAVIG X-Ray Protective Drapes in Reducing Operator Radiation Dose in the Cardiac Catheterization Laboratory: A Randomized Controlled Trial.Circ Cardiovasc Interv. 2020; 13: e009627https://doi.org/10.1161/CIRCINTERVENTIONS.120.009627
- Efficacy of MAVIG X-Ray Protective Drapes in Reducing CTO Operator Radiation.J Interv Cardiol. 2021; 2021: 1-4https://doi.org/10.1155/2021/3146104
- Evaluation of a suspended radiation protection system to reduce operator exposure in cardiology interventional procedures.Catheter Cardiovasc Interv. 2021; 98https://doi.org/10.1002/ccd.29894
- Effect of protective devices in the radiation dose received by the brain of interventional cardiologists.EuroIntervention. 2018; 13: e1778-e1784https://doi.org/10.4244/EIJ-D-17-00759
- Evaluation of Novel Disposable, Light-Weight Radiation Protection Devices in an Interventional Radiology Setting: A Randomized Controlled Trial.Am J Roentgenol. 2013; 200: 915-920https://doi.org/10.2214/AJR.12.8830
- The value of protective head cap and glasses in neurointerventional radiology.J Neurointerv Surg. 2016; 8: 736-740https://doi.org/10.1136/neurintsurg-2015-011703
- Efficiency of the RADPAD Surgical Cap in Reducing Brain Exposure During Pacemaker and Defibrillator Implantation.JACC Clin Electrophysiol. 2021; 7: 161-170https://doi.org/10.1016/j.jacep.2020.08.007
Pelowitz DB. MCNPX User’s Manual. Version 2.7.0, Los Alamos National Laboratory, LA-CP-11-00438 2011.
- Features of MCNP6.Ann Nucl Energy. 2016; 87: 772-783https://doi.org/10.1016/j.anucene.2015.02.020
- Study of the parameters affecting operator doses in interventional radiology using Monte Carlo simulations.Rad Meas. 2011; 46: 1216-1222
- Estimates of Absorbed Fraction for Monoenergetic Photon Sources Uniformly Distributed in Various Organs and Heterogeneous Model.(Report ORNL-4979) Oak Ridge National Laboratory, 1978
Kramer R, Zankl M, Williams G, Drexler G. The calculation of dose from external photon exposures using reference human phantoms and Monte-Carlo methods. Part I. The male (ADAM) and female (EVA) adult mathematical phantoms GSF Bericht S-885 1982.
- Dose conversion coefficients for photon exposure of the human eye lens.Phys Med Biol. 2011; 56: 415-437
- Computerized three-dimensional segmented human anatomy.Med Phys. 1994; 21: 299-302https://doi.org/10.1118/1.597290
- Dose conversion coefficients for electron exposure of the human eye lens.Phys Med Biol. 2009; 54: 4069-4087https://doi.org/10.1088/0031-9155/54/13/008
ICRP. Adult Reference Computational Phantoms. ICRP publication 110. Annals of the ICRP 2009; 39(2): 1-166.
- The Challenges in the Estimation of the Effective Dose When Wearing Radioprotective Garments.Radiat Prot Dosimetry. 2018; 178: 101-111https://doi.org/10.1093/rpd/ncx081
- Development and Validation of the Realistic Anthropomorphic Flexible (RAF) Phantom.Health Phys. 2018; 114: 486-499https://doi.org/10.1097/HP.0000000000000805
Lombardo PA et al.. D9.104: Database of phantom of different statures and postures. 2018. Available at https://www.concert-h2020.eu/en/Publications under D9.104.
- Randomized Controlled Trial of Radiation Protection With a Patient Lead Shield and a Novel, Nonlead Surgical Cap for Operators Performing Coronary Angiography or Intervention.Circ Cardiovasc Interv. 2015; 8: e002384https://doi.org/10.1161/CIRCINTERVENTIONS.115.002384
Aral N, Duch MA, Ardanuy M. Material characterization and Monte Carlo simulation of lead and non-lead X-Ray shielding materials. Radiation Physics and Chemistry 2020; 174. doi:10.1016/j.radphyschem. 2020. doi:10.1016/j.radphyschem.2020.108892.
ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007; 37(2-4):1-332. doi: 10.1016/j.icrp.2007.10.003.
Grabowicz W, Masiarek K, Tomasz Górnik T, Grycewicz T, Brodecki M, Dabin J et al.. The effect of lead free cap on the doses to the head of interventional cardiologists working in haemodynamic room, submitted.
- Effectiveness of pelvic lead blanket to reduce the doses to eye lens and hands of interventional cardiologists and assistant nurses.J Radiol Prot. 2017; 37: 715-727https://doi.org/10.1088/1361-6498/aa7a70
- An instrumented phantom system for analog computation of treatment plans.Am J Roentgenol Radium Ther Nucl Med. 1962; 87: 185-195
- Efficiency of radiation protection equipment in interventional radiology: a systematic Monte Carlo study of eye lens and whole body doses.J Radiol Prot. 2014; 34: 509-528
- Protective Efficacy of Different Ocular Radiation Protection Devices: A Phantom Study.Cardiovasc Intervent Radiol. 2020; 43: 127-134https://doi.org/10.1007/s00270-019-02319-1
- Head and Neck Radiation Dose and Radiation Safety for Interventional Physicians.JACC Cardiovasc Interv. 2017; 10: 520-558https://doi.org/10.1016/j.jcin.2016.11.026
- Shielding properties of lead-free protective clothing and their impact on radiation doses.Med Phys. 2007; 34: 4270-4280https://doi.org/10.1118/1.2786861
- A randomized study comparing the use of a pelvic lead shield during trans-radial interventions: Threefold decrease in radiation to the operator but double exposure to the patient.Catheter Cardiovasc Interv. 2015; 85: 1164-1170
- Dosimetry during Percutaneous Coronary Interventions of Chronic Total Occlusions.Radiat Prot Dosimetry. 2018; 181: 120-218https://doi.org/10.1093/rpd/ncx303
- Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.Catheter Cardiovasc Interv. 2012; 79: 97-102https://doi.org/10.1002/ccd.22947
- Monte Carlo study of patient and medical staff radiation exposures during interventional cardiology.Phys Med. 2021; 82: 200-210https://doi.org/10.1016/j.ejmp.2021.01.065
- Evaluation of a Suspended Personal Radiation Protection System vs. Conventional Apron and Shields in Clinical Interventional Procedures.Open J Radiol. 2013; 3: 143-151https://doi.org/10.4236/ojrad.2013.33024
- A prospective case control comparison of the ZeroGravity system versus a standard lead apron as radiation protection strategy in neuroendovascular procedures.J NeuroInterv Surg. 2016; 8: 1052-1055https://doi.org/10.1136/neurintsurg-2015-012038
MEDIRAD recommendation 3.2, 27-33, Available at Recommended 3 (medirad-project.eu).
- Shielding effectiveness of X-ray protective garment.Phys Med. 2021; 82: 343-350https://doi.org/10.1016/j.ejmp.2021.01.081
- Protective aprons in imaging departments: manufacturer stated lead equivalence values require validation.Eur Radiol. 2005; 15: 1477-1484https://doi.org/10.1007/s00330-004-2571-2
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy