Advertisement
Research Article| Volume 107, 102548, March 2023

Download started.

Ok

An effective and optimized patient-specific QA workload reduction for VMAT plans after MLC-modelling optimization

Published:February 24, 2023DOI:https://doi.org/10.1016/j.ejmp.2023.102548

      Highlights

      • Optimal complexity metric for predicting plan deliverability with our equipment.
      • Effective PSQA workload reduction using complexity metric.
      • Further PSQA workload reduction after optimization of the MLC modelling.

      Abstract

      Introduction

      Many complexity metrics characterize modulated plans. First, this study aimed at identify the optimal complexity metrics to reduce workload associated to patient-specific quality assurance (PSQA) for our equipment and processes. Second, it intended to optimize our MLC modelling to improve measurement and calculation agreement with expectation of further reducing PSQA workload.

      Methods

      Correlation and sensitivity at specificity equals to 1 were evaluated for PSQA results and different complexity metrics. Thresholds to stop PSQA were determined. After validation of the optimal complexity metric and threshold for our equipment and process, the MLC modelling was reviewed with a recently published methodology. This method is based on measurements with a Farmer-type ionization chamber of synchronous and asynchronous sweeping gap plans. Effect on the PSQA results and the identified threshold was investigated.

      Results

      In our center, the most appropriate complexity metric for reducing our PSQA workload was the Modulation Complexity Score for VMAT (MCSv). The optimization of the MLC modelling significantly reduced the number of controlled plans, specifically for one of our two Varian Clinac. Any plan with a MCSv >= 0.34 is treated without PSQA.

      Conclusion

      This study rationalized and reduced our PSQA workload by approximately 30%. It is a continuing work with new TPS, machine or PSQA equipment. It encourages centers to re-evaluate their MLC modelling as well as assess the benefit of complexity metrics to streamline their PSQA workflow. An easier access, at least for reporting, at best for optimizing plans, into the TPS would be beneficial for the community.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ezzell G.A.
        • Galvin J.M.
        • Low D.
        • Palta J.R.
        • Rosen I.
        • Sharpe M.B.
        • et al.
        Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT subcommittee of the AAPM radiation therapy committee.
        Med Phys. 2003; 30: 2089-2115
        • Chan G.H.
        • Chin L.C.L.
        • Abdellatif A.
        • Bissonnette J.-P.
        • Buckley L.
        • Comsa D.
        • et al.
        Survey of patient-specific quality assurance practice for IMRT and VMAT.
        J Appl Clin Med Phys. 2021; 22: 155-164
        • Miften M.
        • Olch A.
        • Mihailidis D.
        • Moran J.
        • Pawlicki T.
        • Molineu A.
        • et al.
        Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.
        Med Phys. 2018; 45: e53-e83
        • Kaplan L.P.
        • Placidi L.
        • Bäck A.
        • Canters R.
        • Hussein M.
        • Vaniqui A.
        • et al.
        Plan quality assessment in clinical practice: results of the 2020 ESTRO survey on plan complexity and robustness.
        Radiother Oncol. 2022; 173: 254-261
        • Chiavassa S.
        • Bessieres I.
        • Edouard M.
        • Mathot M.
        • Moignier A.
        Complexity metrics for IMRT and VMAT plans: a review of current literature and applications.
        Br J Radiol. 2019; 92: 20190270https://doi.org/10.1259/bjr.20190270
        • Antoine M.
        • Ralite F.
        • Soustiel C.
        • Marsac T.
        • Sargos P.
        • Cugny A.
        • et al.
        Use of metrics to quantify IMRT and VMAT treatment plan complexity: a systematic review and perspectives.
        Phys Med. 2019; 64: 98-108
        • Li G.
        • Jiang W.
        • Li Y.
        • Wang Q.
        • Xiao J.
        • Zhong R.
        • et al.
        Description and evaluation of a new volumetric-modulated arc therapy plan complexity metric.
        Med Dosim. 2021; 46: 188-194
        • Tamura M.
        • Matsumoto K.
        • Otsuka M.
        • Monzen H.
        Plan complexity quantification of dual-layer multi-leaf collimator for volumetric modulated arc therapy with Halcyon linac.
        Phys Eng Sci Med. 2020; 43: 947-957https://doi.org/10.1007/s13246-020-00891-2
        • Quintero P.
        • Cheng Y.
        • Benoit D.
        • Moore C.
        • Beavis A.
        Effect of treatment planning system parameters on beam modulation complexity for treatment plans with single-layer multi-leaf collimator and dual-layer stacked multi-leaf collimator.
        Br J Radiol. 2021; 94: 20201011https://doi.org/10.1259/bjr.20201011
        • Masi L.
        • Hernandez V.
        • Saez J.
        • Doro R.
        • Livi L.
        Robotic MLC-based plans: a study of plan complexity.
        Med Phys. 2021; 48: 942-952https://doi.org/10.1002/mp.14667
      1. Santos T, Ventura T, Mateus J, Capela M, Lopes M do C. On the complexity of helical tomotherapy treatment plans. J Appl Clin Med Phys 2020;21:107–18. https://doi.org/10.1002/acm2.12895.

        • Valdes G.
        • Scheuermann R.
        • Hung C.Y.
        • Olszanski A.
        • Bellerive M.
        • Solberg T.D.
        A mathematical framework for virtual IMRT QA using machine learning: Virtual IMRT QA.
        Med Phys. 2016; 43: 4323-4334https://doi.org/10.1118/1.4953835
        • Valdes G.
        • Chan M.F.
        • Lim S.B.
        • Scheuermann R.
        • Deasy J.O.
        • Solberg T.D.
        IMRT QA using machine learning: A multi-institutional validation.
        J Appl Clin Med Phys. 2017; 18: 279-284https://doi.org/10.1002/acm2.12161
        • Tomori S.
        • Kadoya N.
        • Takayama Y.
        • Kajikawa T.
        • Shima K.
        • Narazaki K.
        • et al.
        A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance.
        Med Phys. 2018; 45: 4055-4065
        • Wall P.D.H.
        • Fontenot J.D.
        Quality assurance-based optimization (QAO): Towards improving patient-specific quality assurance in volumetric modulated arc therapy plans using machine learning.
        Phys Med. 2021; 87: 136-143https://doi.org/10.1016/j.ejmp.2021.03.017
        • Li B.
        • Chen J.
        • Guo W.
        • Mao R.
        • Zheng X.
        • Cheng X.
        • et al.
        Improvement using planomics features on prediction and classification of patient-specific quality assurance using head and neck volumetric modulated arc therapy plan.
        Front Neurosci. 2021; 15744296https://doi.org/10.3389/fnins.2021.744296
        • Noblet C.
        • Duthy M.
        • Coste F.
        • Saliou M.
        • Samain B.
        • Drouet F.
        • et al.
        Implementation of volumetric-modulated arc therapy for locally advanced breast cancer patients: Dosimetric comparison with deliverability consideration of planning techniques and predictions of patient-specific QA results via supervised machine learning.
        Phys Med. 2022; 96: 18-31
        • Thongsawad S.
        • Srisatit S.
        • Fuangrod T.
        Predicting gamma evaluation results of patient-specific head and neck volumetric-modulated arc therapy quality assurance based on multileaf collimator patterns and fluence map features: a feasibility study.
        J Appl Clin Med Phys. 2022; 23https://doi.org/10.1002/acm2.13622
        • Crowe S.B.
        • Kairn T.
        • Middlebrook N.
        • Sutherland B.
        • Hill B.
        • Kenny J.
        • et al.
        Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results.
        Phys Med Biol. 2015; 60: 2587-2601
        • Park J.M.
        • Park S.-Y.
        • Kim H.
        Modulation index for VMAT considering both mechanical and dose calculation uncertainties.
        Phys Med Biol. 2015; 60: 7101-7125https://doi.org/10.1088/0031-9155/60/18/7101
        • Götstedt J.
        • Karlsson Hauer A.
        • Bäck A.
        Development and evaluation of aperture-based complexity metrics using film and EPID measurements of static MLC openings: Development and evaluation of aperture-based complexity metrics.
        Med Phys. 2015; 42: 3911-3921https://doi.org/10.1118/1.4921733
        • Benedek H.
        • Isacsson U.
        • Olevik-Dunder M.
        • Westermark M.
        • Hållström P.
        • Olofsson J.
        • et al.
        Strategies for quality assurance of intensity modulated radiation therapy.
        J Phys Conf Ser. 2015; 573: 012015
        • Jurado-Bruggeman D.
        • Hernández V.
        • Sáez J.
        • Navarro D.
        • Pino F.
        • Martínez T.
        • et al.
        Multi-centre audit of VMAT planning and pre-treatment verification.
        Radiother Oncol. 2017; 124: 302-310
        • Shen L.
        • Chen S.
        • Zhu X.
        • Han C.
        • Zheng X.
        • Deng Z.
        • et al.
        Multidimensional correlation among plan complexity, quality and deliverability parameters for volumetric-modulated arc therapy using canonical correlation analysis.
        J Radiat Res (Tokyo). 2018; 59: 207-215
        • Wang Y.
        • Pang X.
        • Feng L.
        • Wang H.
        • Bai Y.
        Correlation between gamma passing rate and complexity of IMRT plan due to MLC position errors.
        Phys Med. 2018; 47: 112-120https://doi.org/10.1016/j.ejmp.2018.03.003
        • Dechambre D.
        • Baart V.
        • Mathot M.
        OC-0612: dedicated VMAT complexity metrics reduce patient QA workload.
        Radiother Oncol. 2018; 127: S323https://doi.org/10.1016/S0167-8140(18)30922-8
        • Götstedt J.
        • Bäck A.
        Edge area metric complexity scoring of volumetric modulated arc therapy plans.
        Phys Imaging Radiat Oncol. 2021; 17: 124-129https://doi.org/10.1016/j.phro.2021.02.002
        • Cornell M.
        • Kaderka R.
        • Hild S.J.
        • Ray X.J.
        • Murphy J.D.
        • Atwood T.F.
        • et al.
        Noninferiority study of automated knowledge-based planning versus human-driven optimization across multiple disease sites.
        Int J Radiat Oncol. 2020; 106: 430-439
        • Okuhata K.
        • Monzen H.
        • Tamura M.
        • Matsumoto K.
        • Otsuka M.
        • Kubo K.
        • et al.
        Plan complexity and delivery accuracy of knowledge-based volumetric modulated arc therapy plans with single optimization for oropharyngeal cancer.
        Anticancer Res. 2021; 41: 2925-2931
        • Pocza T.
        • Szegedi D.
        • Major T.
        • Pesznyak C.
        Verification of an optimizer algorithm by the beam delivery evaluation of intensity-modulated arc therapy plans.
        Radiol Oncol. 2021; 55: 508-515https://doi.org/10.2478/raon-2021-0046
      2. Zheng J, Xia Y, Sun L. A comprehensive evaluation of the application of the Halcyon(2.0) IMRT technique in long-course radiotherapy for rectal cancer. Technol Cancer Res Treat 2022;21:153303382210745. https://doi.org/10.1177/15330338221074501.

        • Sande E.P.S.
        • Acosta Roa A.M.
        • Hellebust T.P.
        Dose deviations induced by respiratory motion for radiotherapy of lung tumors: Impact of CT reconstruction, plan complexity, and fraction size.
        J Appl Clin Med Phys. 2020; 21: 68-79https://doi.org/10.1002/acm2.12847
        • Glenn M.C.
        • Peterson C.B.
        • Followill D.S.
        • Howell R.M.
        • Pollard-Larkin J.M.
        • Kry S.F.
        Reference dataset of users’ photon beam modeling parameters for the Eclipse, Pinnacle, and RayStation treatment planning systems.
        Med Phys. 2020; 47: 282-288https://doi.org/10.1002/mp.13892
        • Glenn M.C.
        • Peterson C.B.
        • Howell R.M.
        • Followill D.S.
        • Pollard-Larkin J.M.
        • Kry S.F.
        Sensitivity of IROC phantom performance to radiotherapy treatment planning system beam modeling parameters based on community-driven data.
        Med Phys. 2020; 47: 5250-5259https://doi.org/10.1002/mp.14396
        • Saez J.
        • Hernandez V.
        • Goossens J.o.
        • De Kerf G.
        • Verellen D.
        A novel procedure for determining the optimal MLC configuration parameters in treatment planning systems based on measurements with a Farmer chamber.
        Phys Med Biol. 2020; 65: 155006
        • Masi L.
        • Doro R.
        • Favuzza V.
        • Cipressi S.
        • Livi L.
        Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy: Plan parameters and VMAT dosimetric accuracy.
        Med Phys. 2013; 40: 071718
        • Younge K.C.
        • Matuszak M.M.
        • Moran J.M.
        • McShan D.L.
        • Fraass B.A.
        • Roberts D.A.
        Penalization of aperture complexity in inversely planned volumetric modulated arc therapy.
        Med Phys. 2012; 39: 7160-7170https://doi.org/10.1118/1.4762566
        • McNiven A.L.
        • Sharpe M.B.
        • Purdie T.G.
        A new metric for assessing IMRT modulation complexity and plan deliverability: new metric for assessing IMRT complexity and deliverability.
        Med Phys. 2010; 37: 505-515https://doi.org/10.1118/1.3276775
        • Park J.M.
        • Park S.-Y.
        • Kim H.
        • Kim J.H.
        • Carlson J.
        • Ye S.-J.
        Modulation indices for volumetric modulated arc therapy.
        Phys Med Biol. 2014; 59: 7315-7340https://doi.org/10.1088/0031-9155/59/23/7315
        • Savini A.
        • Bartolucci F.
        • Fidanza C.
        • Rosica F.
        • Orlandi G.
        PO-0806: Optimisation and assessment of the MLC model in the Raystation treatment planning system.
        Radiother Oncol. 2016; 119: S380-S381
        • Nguyen M.
        • Chan G.H.
        Quantified VMAT plan complexity in relation to measurement-based quality assurance results.
        J Appl Clin Med Phys. 2020; 21: 132-140https://doi.org/10.1002/acm2.13048
        • Hernandez V.
        • Hansen C.R.
        • Widesott L.
        • Bäck A.
        • Canters R.
        • Fusella M.
        • et al.
        What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans.
        Radiother Oncol. 2020; 153: 26-33
        • Craft D.
        • Süss P.
        • Bortfeld T.
        The tradeoff between treatment plan quality and required number of monitor units in intensity-modulated radiotherapy.
        Int J Radiat Oncol. 2007; 67: 1596-1605https://doi.org/10.1016/j.ijrobp.2006.11.034
        • Lee M.T.
        • Purdie T.G.
        • Eccles C.L.
        • Sharpe M.B.
        • Dawson L.A.
        Comparison of simple and complex liver intensity modulated radiotherapy.
        Radiat Oncol. 2010; 5: 115https://doi.org/10.1186/1748-717X-5-115
        • Kairn T.
        • Crowe S.B.
        • Kenny J.
        • Knight R.T.
        • Trapp J.V.
        Predicting the likelihood of QA failure using treatment plan accuracy metrics.
        J Phys Conf Ser. 2014; 489012051https://doi.org/10.1088/1742-6596/489/1/012051
        • Brainlab
        Stereotactic radiosurgical optimization for cranial indications.
        White paper. 2016;
        • Wang Y.
        • Chen L.
        • Zhu F.
        • Guo W.
        • Zhang D.
        • Sun W.
        A study of minimum segment width parameter on VMAT plan quality, delivery accuracy, and efficiency for cervical cancer using Monaco TPS.
        J Appl Clin Med Phys. 2018; 19: 609-615https://doi.org/10.1002/acm2.12422
        • Boyd R.
        • Jeong K.
        • Tomé W.A.
        Determining efficient helical IMRT modulation factor from the MLC leaf-open time distribution on precision treatment planning system.
        J Appl Clin Med Phys. 2019; 20: 64-74https://doi.org/10.1002/acm2.12581
        • Cotrutz C.
        • Xing L.
        Segment-based dose optimization using a genetic algorithm.
        Phys Med Biol. 2003; 48: 2987-2998https://doi.org/10.1088/0031-9155/48/18/303
        • Carlsson F.
        Combining segment generation with direct step-and-shoot optimization in intensity-modulated radiation therapy.
        Med Phys. 2008; 35: 3828-3838https://doi.org/10.1118/1.2964096