Highlights
- •Overview of Head and Neck adaptive radiotherapy key steps.
- •Presentation of adaptive radiotherapy tools and workflows.
- •Practical recommendations for H&N adaptive radiotherapy.
- •Challenges of H&N ART and current difficulties or limitations.
Abstract
Keywords
1. Introduction
- Nishi T.
- Nishimura Y.
- Shibata T.
- Tamura M.
- Nishigaito N.
- Okumura M.
- Brouwer C.L.
- Steenbakkers R.J.H.M.
- Langendijk J.A.
- Sijtsema N.M.
Galloway TJ, Zhang Q (Ed), Nguyen-Tan PF, Rosenthal DI, Soulieres D, Fortin A, et al. Prognostic Value of p16 Status on the Development of a Complete Response in Involved Oropharynx Cancer Neck Nodes After Cisplatin-Based Chemoradiation: A Secondary Analysis of NRG Oncology RTOG 0129. Int J Radiat Oncol Biol Phys 2016;96:362–71. https://doi.org/10.1016/j.ijrobp.2016.05.026.
- Brouwer C.L.
- Steenbakkers R.J.H.M.
- Langendijk J.A.
- Sijtsema N.M.
2. Image registration
2.1 Rigid image registration (RIR)
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
2.2 Deformable image registration (DIR)
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
- Nie K.
- Chuang C.
- Kirby N.
- Braunstein S.
- Pouliot J.
- Pukala J.
- Meeks S.L.
- Staton R.J.
- Bova F.J.
- Mañon R.R.
- Langen K.M.
- Singhrao K.
- Kirby N.
- Pouliot J.
- Pukala J.
- Meeks S.L.
- Staton R.J.
- Bova F.J.
- Mañon R.R.
- Langen K.M.
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
- Lustberg T.
- van Soest J.
- Gooding M.
- Peressutti D.
- Aljabar P.
- van der Stoep J.
- et al.
- -An evaluation of RIR and DIR is recommended before the first software use, and at each update.
- -Geometrical phantoms must be used to assess spatial integrity of RIR, and anthropomorphic phantoms to evaluate clinical RIR uncertainties.
- -Create known deformations from physical, numerical phantoms or patient images is recommended to evaluate initial DIR algorithm performance.
- -In case of automatic registration (RIR or DIR), it is recommended to perform it in a localised area of interest (with boxes) and where information from the two images are available.
- -A patient-specific DIR review is required (at least visual, quantitative if possible). Systematic visual inspection is necessary to validate deformation and to identify areas of uncertainty such as large deformations or artifacts.
- -For DIR evaluation with contours, a combination of several indexes, at least overlapping and distance evaluation metrics with complementary specificities, is recommended.
3. Image segmentation for delineation
- Brouwer C.L.
- Steenbakkers R.J.H.M.
- Bourhis J.
- Budach W.
- Grau C.
- Grégoire V.
- et al.
- van Dijk L.V.
- Van den Bosch L.
- Aljabar P.
- Peressutti D.
- Both S.
- Steenbakkers J.H.M.
- et al.
- Močnik D.
- Ibragimov B.
- Xing L.
- Strojan P.
- Likar B.
- Pernuš F.
- et al.
- van de Schoot A.J.
- Schooneveldt G.
- Wognum S.
- Hoogeman M.S.
- Chai X.
- Stalpers L.J.A.
- et al.
- Boeke S.
- Mönnich D.
- van Timmeren J.E.
- Balermpas P.
- van Dijk L.V.
- Van den Bosch L.
- Aljabar P.
- Peressutti D.
- Both S.
- Steenbakkers J.H.M.
- et al.
Lalaoui L, Mohamadi T. A comparative study of Image Region-Based Segmentation Algorithms 2013. https://doi.org/10.14569/IJACSA.2013.040627.
- Sharp G.
- Fritscher K.D.
- Pekar V.
- Peroni M.
- Shusharina N.
- Veeraraghavan H.
- et al.
- Costea M.
- Zlate A.
- Durand M.
- Baudier T.
- Grégoire V.
- Sarrut D.
- et al.
- Nishi T.
- Nishimura Y.
- Shibata T.
- Tamura M.
- Nishigaito N.
- Okumura M.
- Castadot P.
- Geets X.
- Lee J.A.
- Christian N.
- Grégoire V.
- Olteanu L.A.M.
- Berwouts D.
- Madani I.
- De Gersem W.
- Vercauteren T.
- Duprez F.
- et al.
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
- -For AS initial commissioning, a geometric and dosimetric evaluation of segmented contours in comparison with reference contours is recommended.
- -For AS evaluation, a combination of several indexes, at least overlapping and distance evaluation metrics with complementary specificities, is required.
- -Acceptability threshold of metrics must be defined in function of segmented volume (taking into account inter and intra operator variability, geometric image parameter, etc.).
- -Benchmarking AS solution is required to assess contouring quality to know the algorithm performance.
- -A systematic verification and human validation by a skilled operator of the segmented contours is necessary.
- -For OARs and target volumes, standardisation of structure names and rigorous descriptions are required.
- -To avoid unexpected recurrence, it is necessary to adapt the GTV and the CTV based on anatomical barriers, and not on a geometrical approach.
4. Estimation of the delivered dose of the day
4.1 Dose calculation with a TPS
- Washio H.
- Ohira S.
- Funama Y.
- Morimoto M.
- Wada K.
- Yagi M.
- et al.
- Barateau A.
- Garlopeau C.
- Cugny A.
- De Figueiredo B.H.
- Dupin C.
- Caron J.
- et al.
- Barateau A.
- Garlopeau C.
- Cugny A.
- De Figueiredo B.H.
- Dupin C.
- Caron J.
- et al.
- Giacometti V.
- Hounsell A.R.
- McGarry C.K.
Yadav P, Ramasubramanian V, Paliwal B. Feasibility study on effect and stability of adaptive radiotherapy on kilovoltage cone beam CT. Radiol Oncol 2011;45. https://doi.org/10.2478/v10019-011-0024-5.
- Chen X.
- Yang B.
- Li J.
- Zhu J.
- Ma X.
- Chen D.
- et al.
- Noble D.J.
- Yeap P.-L.
- Seah S.Y.K.
- Harrison K.
- Shelley L.E.A.
- Romanchikova M.
- et al.
- Noble D.J.
- Yeap P.-L.
- Seah S.Y.K.
- Harrison K.
- Shelley L.E.A.
- Romanchikova M.
- et al.
- Hoegen P.
- Lang C.
- Akbaba S.
- Häring P.
- Splinter M.
- Miltner A.
- et al.
4.2 Portal dosimetry and other tools
- Lim S.B.
- Tsai C.J.
- Yu Y.
- Greer P.
- Fuangrod T.
- Hwang K.
- et al.
- Torres-Xirau I.
- Olaciregui-Ruiz I.
- Kaas J.
- Nowee M.E.
- van der Heide U.A.
- Mans A.
- -For dose calculation purpose, kV-CT and MV-CT in-room images require a specific HU-density curve while kV-CBCT and MRI images require more sophisticated methods (DIR and DLM) to overcome technical limitations.
- -In-room images require periodic control to ensure their stability.
- -A validation process, based on dose comparison for phantoms and patients, on in-room and CT images, must be performed considering each in-room imaging system, and each image protocol used.
- -Create a dedicated IG-ART protocol for a specific ART evaluation is recommended.
- -Portal dosimetry could help to compute the dose of the day but limitations of such algorithms have uncertainties and have to be evaluated before clinical use.
5. Dose monitoring (dose accumulation)
- Veiga C.
- McClelland J.
- Moinuddin S.
- Lourenço A.
- Ricketts K.
- Annkah J.
- et al.
- -Evaluation of RIR and DIR performance (part 1) is recommended in order to know algorithm behaviour in homogeneous and heterogeneous medium, and provide an order of magnitude for dose uncertainties.
- -Be aware of uncertainties due to registrations and dose warping.
- -It is recommended to perform localised registrations for dose accumulation in case of specific area of interest (dose to spinal cord for example).
- -To trigger replanning, approximations can be done by accumulating weekly doses instead of daily doses.
6. ART workflows
- Grégoire V.
- Boisbouvier S.
- Giraud P.
- Maingon P.
- Pointreau Y.
- Vieillevigne L.
- Kearney M.
- Coffey M.
- Leong A.
6.1 Offline ART workflow

- Brouwer C.L.
- Steenbakkers R.J.H.M.
- Langendijk J.A.
- Sijtsema N.M.
Avgousti R, Antypas C, Armpilia C, Simopoulou F, Liakouli Z, Karaiskos P, et al. Adaptive radiation therapy: When, how and what are the benefits that literature provides? Cancer Radiother J Soc Francaise Radiother Oncol 2021:S1278-3218(21)00264-X. https://doi.org/10.1016/j.canrad.2021.08.023.
- Grepl J.
- Sirak I.
- Vosmik M.
- Pohankova D.
- Hodek M.
- Paluska P.
- et al.
- Noble D.J.
- Yeap P.-L.
- Seah S.Y.K.
- Harrison K.
- Shelley L.E.A.
- Romanchikova M.
- et al.
- Piron O.
- Varfalvy N.
- Archambault L.
- Brouwer C.L.
- Steenbakkers R.J.H.M.
- Langendijk J.A.
- Sijtsema N.M.
- Wagenaar D.
- Kierkels R.G.J.
- Free J.
- Langendijk J.A.
- Both S.
- Korevaar E.W.
- Miura H.
- Doi Y.
- Ozawa S.
- Nakao M.
- Ohnishi K.
- Kenjo M.
- et al.
- Cubillos-Mesías M.
- Troost E.G.C.
- Lohaus F.
- Agolli L.
- Rehm M.
- Richter C.
- et al.
6.2 Online ART workflow
- Piron O.
- Varfalvy N.
- Archambault L.
- Piras A.
- Boldrini L.
- Menna S.
- Venuti V.
- Pernice G.
- Franzese C.
- et al.
- Boeke S.
- Mönnich D.
- van Timmeren J.E.
- Balermpas P.

6.3 Workflow organization
- Meyer P.
- Biston M.-C.
- Khamphan C.
- Marghani T.
- Mazurier J.
- Bodez V.
- et al.
- Meyer P.
- Biston M.-C.
- Khamphan C.
- Marghani T.
- Mazurier J.
- Bodez V.
- et al.
- Calmels L.
- Sibolt P.
- Åström L.M.
- Serup-Hansen E.
- Lindberg H.
- Fromm A.-L.
- et al.
- Shepherd M.
- Graham S.
- Ward A.
- Zwart L.
- Cai B.
- Shelley C.
- et al.
- Shepherd M.
- Graham S.
- Ward A.
- Zwart L.
- Cai B.
- Shelley C.
- et al.
Adair Smith G, Dunlop A, Alexander SE, Barnes H, Casey F, Chick J, et al. Evaluation of Therapeutic Radiographer Contouring for Magnetic Resonance Image Guided Online Adaptive Prostate Radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol 2023:109457. https://doi.org/10.1016/j.radonc.2022.109457.
- -Prior training and skills validation are required for each operator through specific accreditation, for offline and online ART treatments.
- -To delegate, training courses have to be formalised and competences should be validated by the responsible (physician for contouring and physicist for planning).
- -As anatomical changes are a gradual process during H&N radiotherapy treatment, at least weekly 3D in-room imaging should be recommended to determine if an ART procedure is necessary.
- -Online strategies can be interesting for H&N ART, not necessary for a systematic daily replanning because progressive variations are observed but needed during the treatment course when one (or more) replanning decision criteria are met.
- -Robust optimization should be used to improve plan robustness to anatomical changes.
7. Quality assurance
7.1 Machine and imaging quality assurance
7.2 Patient specific quality assurance (PSQA)
[PDF] GUIDELINES FOR THE VERIFICATION OF IMRT - Free Download PDF n.d. https://silo.tips/download/guidelines-for-the-verification-of-imrt (accessed February 3, 2023).
AAPM Committee Tree - Task Group No. 360 - Performance validation of surrogate assessment systems in the context of medical physics applications (TG360) n.d. https://www.aapm.org/org/structure/?committee_code=TG360 (accessed February 3, 2023).
- Glenn M.C.
- Hernandez V.
- Saez J.
- Followill D.S.
- Howell R.M.
- Pollard-Larkin J.M.
- et al.
7.3 End-to-end testing and risk management
- Schreiner L.J.
- Axford A.
- Dikaios N.
- Roberts D.A.
- Clark C.H.
- Evans P.M.
- Lim S.B.
- Tsai C.J.
- Yu Y.
- Greer P.
- Fuangrod T.
- Hwang K.
- et al.
- -A comprehensive machine QA program according to national or international guidelines with a particular focus on imaging should be designed.
- -The assessment of image quality and image-guided ART protocol optimisation (particularly on acquisition and reconstruction parameters) is recommended.
- -A systematic measurement of pre-treatment PSQA should be done following recommendations made by Miften et al. [[165]] (before the first treatment session in an online ART workflow and for each new plan generated in an offline workflow).
- -For online ART:
- -A sensitivity analysis to errors of the surrogate QA system should be conducted to assess its reliability.
- -Complexity of adapted plans should be monitored in order to identify plans deviating from normal operating conditions.
- -Periodic measurement-based PSQA of adapted plans should be performed to identify a potential drift in plan QA.
- -
- -Each component of the ART workflow should be assessed with a specific QA.
- -In the absence of a commercialised E2E phantom dedicated to ART, E2E testing should be conducted with the current existing tools (allowing at a minimum IGRT, DIR and dose verifications).
- -Performing a FMEA is strongly recommended in order to identify potential risks in the ART workflow and provide solutions to mitigate them.
8. Conclusions
Declaration of Competing Interest
References
- Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system.Int J Radiat Oncol • Biol • Phys. 2004; 59: 960-970https://doi.org/10.1016/j.ijrobp.2003.12.024
- Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer.Radiother Oncol J Eur Soc Ther Radiol Oncol. 2013; https://doi.org/10.1016/j.radonc.2012.11.005
- Anatomical and Dose Changes of Gross Tumour Volume and Parotid Glands for Head and Neck Cancer Patients during Intensity-modulated Radiotherapy: Effect on the Probability of Xerostomia Incidence.Clin Oncol. 2012; 24: e54-e62https://doi.org/10.1016/j.clon.2011.11.006
- Dose variations in tumor volumes and organs at risk during IMRT for head-and-neck cancer.J Appl Clin Med Phys. 2012; 13: 101-111https://doi.org/10.1120/jacmp.v13i6.3723
- Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help?.Radiother Oncol J Eur Soc Ther Radiol Oncol. 2015; 115: 285-294https://doi.org/10.1016/j.radonc.2015.05.018
- Adaptive Radiotherapy for Head-and-Neck Cancer: Initial Clinical Outcomes From a Prospective Trial.Int J Radiat Oncol. 2012; 83: 986-993https://doi.org/10.1016/j.ijrobp.2011.08.017
- Adaptive radiotherapy for head and neck cancer.Acta Oncol. 2018; 57: 1284-1292https://doi.org/10.1080/0284186X.2018.1505053
- Prognostic value of midtreatment FDG-PET in oropharyngeal cancer.Head Neck. 2016; 38: 1472-1478https://doi.org/10.1002/hed.24454
- Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): An R-IDEAL stage 2a–2b/Bayesian phase II trial.Clin Transl Radiat Oncol. 2018; 13: 19-23https://doi.org/10.1016/j.ctro.2018.08.003
- Initial Feasibility and Clinical Implementation of Daily MR-Guided Adaptive Head and Neck Cancer Radiation Therapy on a 1.5T MR-Linac System: Prospective R-IDEAL 2a/2b Systematic Clinical Evaluation of Technical Innovation.Int J Radiat Oncol. 2021; 109: 1606-1618https://doi.org/10.1016/j.ijrobp.2020.12.015
- A Strategy of Using Intra-treatment Hypoxia Imaging to Selectively and Safely Guide Radiation Dose Deescalation Concurrent with Chemotherapy for Loco-regionally Advanced Human Papillomavirus-Related Oropharyngeal Carcinoma.Int J Radiat Oncol Biol Phys. 2016; 96: 9-17https://doi.org/10.1016/j.ijrobp.2016.04.027
- Functional Adaptation in Radiation Therapy.Semin Radiat Oncol. 2019; 29: 236-244https://doi.org/10.1016/j.semradonc.2019.02.006
- Functional imaging early during (chemo)radiotherapy for response prediction in head and neck squamous cell carcinoma; a systematic review.Oral Oncol. 2019; 88: 75-83https://doi.org/10.1016/j.oraloncology.2018.11.005
- Early Response Prediction of Multiparametric Functional MRI and 18F-FDG-PET in Patients with Head and Neck Squamous Cell Carcinoma Treated with (Chemo)Radiation.Cancers. 2022; 14: 216https://doi.org/10.3390/cancers14010216
Galloway TJ, Zhang Q (Ed), Nguyen-Tan PF, Rosenthal DI, Soulieres D, Fortin A, et al. Prognostic Value of p16 Status on the Development of a Complete Response in Involved Oropharynx Cancer Neck Nodes After Cisplatin-Based Chemoradiation: A Secondary Analysis of NRG Oncology RTOG 0129. Int J Radiat Oncol Biol Phys 2016;96:362–71. https://doi.org/10.1016/j.ijrobp.2016.05.026.
- Diffusion-Weighted Magnetic Resonance Imaging-Guided Dose Painting in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy Plus Concurrent Chemoradiotherapy: A Randomized, Controlled Clinical Trial.Int J Radiat Oncol Biol Phys. 2022; 113: 101-113https://doi.org/10.1016/j.ijrobp.2021.12.175
- Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning.Head Neck. 2014; 36: 1541-1546https://doi.org/10.1002/hed.23477
- Computed Tomography to Cone Beam Computed Tomography Deformable Image Registration for Contour Propagation Using Head and Neck, Patient-Based Computational Phantoms: A Multicenter Study.Pract Radiat Oncol. 2020; 10: 125-132https://doi.org/10.1016/j.prro.2019.11.011
- The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy.J Appl Clin Med Phys. 2018; 19: 185-194https://doi.org/10.1002/acm2.12361
Brock KK, Mutic S, McNutt TR, Li H, Kessler ML. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44:e43–76. https://doi.org/10.1002/mp.12256.
- Deformable Medical Image Registration: A Survey.IEEE Trans Med Imaging. 2013; 32: 1153-1190https://doi.org/10.1109/TMI.2013.2265603
- A survey of medical image registration - under review.Med Image Anal. 2016; 33: 140-144https://doi.org/10.1016/j.media.2016.06.030
- Objective assessment of deformable image registration in radiotherapy: A multi-institution study.Med Phys. 2008; 35: 5944-5953https://doi.org/10.1118/1.3013563
- Evaluation of deformable image registration and motion model in CT images with limited features.Phys Med Biol. 2012; 57: 2539-2554https://doi.org/10.1088/0031-9155/57/9/2539
- A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive.Phys Med Biol. 2013; 58: 2861-2877https://doi.org/10.1088/0031-9155/58/9/2861
- Truth cube: Establishing physical standards for soft tissue simulation.Med Image Anal. 2003; 7: 283-291https://doi.org/10.1016/S1361-8415(03)00008-2
- Site-specific deformable imaging registration algorithm selection using patient-based simulated deformations: Site-specific DIR selection using patient-based simulated deformations.Med Phys. 2013; 40041911https://doi.org/10.1118/1.4793723
- A virtual phantom library for the quantification of deformable image registration uncertainties in patients with cancers of the head and neck: Virtual phantoms for the quantification of DIR uncertainty.Med Phys. 2013; 40111703https://doi.org/10.1118/1.4823467
- Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors.Radiother Oncol. 2008; 89: 1-12https://doi.org/10.1016/j.radonc.2008.04.010
- A three-dimensional head-and-neck phantom for validation of multimodality deformable image registration for adaptive radiotherapy: 3D H&N phantom for DIR validation.Med Phys. 2014; 41121709https://doi.org/10.1118/1.4901523
- A two-dimensional deformable phantom for quantitatively verifying deformation algorithms.Med Phys. 2011; 38: 4583-4586https://doi.org/10.1118/1.3597881
- Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.Radiother Oncol J Eur Soc Ther Radiol Oncol. 2018; 126: 312-317https://doi.org/10.1016/j.radonc.2017.11.012
- Standardizing Naming Conventions in Radiation Oncology.Int J Radiat Oncol Biol Phys. 2012; 83: 1344-1349https://doi.org/10.1016/j.ijrobp.2011.09.054
- Organ at risk delineation for radiation therapy clinical trials: Global Harmonization Group consensus guidelines.Radiother Oncol. 2020; 150: 30-39https://doi.org/10.1016/j.radonc.2020.05.038
- American Association of Physicists in Medicine Task Group 263: Standardizing Nomenclatures in Radiation Oncology.Int J Radiat Oncol Biol Phys. 2018; 100: 1057-1066https://doi.org/10.1016/j.ijrobp.2017.12.013
- CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines.Radiother Oncol J Eur Soc Ther Radiol Oncol. 2015; 117: 83-90https://doi.org/10.1016/j.radonc.2015.07.041
- Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.Radiother Oncol J Eur Soc Ther Radiol Oncol. 2020; 142: 115-123https://doi.org/10.1016/j.radonc.2019.09.022
- Segmentation of parotid glands from registered CT and MR images.Phys Medica PM Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys AIFB. 2018; 52: 33-41https://doi.org/10.1016/j.ejmp.2018.06.012
- Automatic Nasopharyngeal Carcinoma Segmentation Using Fully Convolutional Networks with Auxiliary Paths on Dual-Modality PET-CT Images.J Digit Imaging. 2019; 32: 462-470https://doi.org/10.1007/s10278-018-00173-0
- Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model.Med Phys. 2014; 41031707https://doi.org/10.1118/1.4865762
- Tailoring PTV expansion to improve the dosimetry of post modified radical mastectomy intensity-modulated radiotherapy for left-sided breast cancer patients by using 4D CT combined with cone beam CT.J Appl Clin Med Phys. 2021; 22: 139-146https://doi.org/10.1002/acm2.13244
- Automatic Segmentation of KV-CT and MV-CT Images of Head and Neck Patients.Int J Radiat Oncol Biol Phys. 2010; 78: S490-S491https://doi.org/10.1016/j.ijrobp.2010.07.1148
- Characterization of imaging performance of a novel helical kVCT for use in image-guided and adaptive radiotherapy.J Appl Clin Med Phys. 2022; 23: e13648https://doi.org/10.1002/acm2.13648
- Automated Segmentation of the Parotid Gland Based on Atlas Registration and Machine Learning: A Longitudinal MRI Study in Head-and-Neck Radiation Therapy.Int J Radiat Oncol Biol Phys. 2014; 90: 1225-1233https://doi.org/10.1016/j.ijrobp.2014.08.350
- MR-Guided Radiotherapy for Head and Neck Cancer: Current Developments, Perspectives, and Challenges.Front Oncol. 2021; 11616156https://doi.org/10.3389/fonc.2021.616156
- Image quality comparisons of coil setups in 3T MRI for brain and head and neck radiotherapy simulations.J Appl Clin Med Phys. 2022; 23: e13794https://doi.org/10.1002/acm2.13794
- Delineation uncertainties of tumour volumes on MRI of head and neck cancer patients.Clin Transl Radiat Oncol. 2022; 36: 121-126https://doi.org/10.1016/j.ctro.2022.08.005
- A national study on the inter-observer variability in the delineation of organs at risk in the brain.Acta Oncol. 2021; 60: 1548-1554https://doi.org/10.1080/0284186X.2021.1975813
- Advances in Auto-Segmentation.Semin Radiat Oncol. 2019; 29: 185-197https://doi.org/10.1016/j.semradonc.2019.02.001
- Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy.Phys Imaging Radiat Oncol. 2020; 13: 1-6https://doi.org/10.1016/j.phro.2019.12.001
- Interobserver variability in delineation of target volumes in head and neck cancer.Radiother Oncol. 2019; 137: 9-15https://doi.org/10.1016/j.radonc.2019.04.006
- Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.Int J Radiat Oncol Biol Phys. 2010; 77: 959-966https://doi.org/10.1016/j.ijrobp.2009.09.023
- Use of auto-segmentation in the delineation of target volumes and organs at risk in head and neck.Acta Oncol Stockh Swed. 2016; 55: 799-806https://doi.org/10.3109/0284186X.2016.1173723
- Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.Radiat Oncol. 2013; 8: 154https://doi.org/10.1186/1748-717X-8-154
- Automated Tumor Segmentation in Radiotherapy.Semin Radiat Oncol. 2022; 32: 319-329https://doi.org/10.1016/j.semradonc.2022.06.002
- Automatic segmentation of head and neck primary tumors on MRI using a multi-view CNN.Cancer Imaging. 2022; 22: 8https://doi.org/10.1186/s40644-022-00445-7
Lalaoui L, Mohamadi T. A comparative study of Image Region-Based Segmentation Algorithms 2013. https://doi.org/10.14569/IJACSA.2013.040627.
- Deep Learning: A Review for the Radiation Oncologist.Front Oncol. 2019; 9: 977https://doi.org/10.3389/fonc.2019.00977
- Auto-segmentation of normal and target structures in head and neck CT images: A feature-driven model-based approach.Med Phys. 2011; 38: 6160-6170https://doi.org/10.1118/1.3654160
- Overview of artificial intelligence-based applications in radiotherapy: Recommendations for implementation and quality assurance.Radiother Oncol. 2020; 153: 55-66https://doi.org/10.1016/j.radonc.2020.09.008
- Vision 20/20: Perspectives on automated image segmentation for radiotherapy.Med Phys. 2014; 41050902https://doi.org/10.1118/1.4871620