Advertisement
Research Article| Volume 110, 102593, June 2023

Download started.

Ok

Multicentric evaluation of a machine learning model to streamline the radiotherapy patient specific quality assurance process

  • Nicola Lambri
    Affiliations
    IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy

    Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
    Search for articles by this author
  • Victor Hernandez
    Affiliations
    Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
    Search for articles by this author
  • Jordi Sáez
    Affiliations
    Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
    Search for articles by this author
  • Marco Pelizzoli
    Affiliations
    IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy

    Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Sara Parabicoli
    Affiliations
    IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy

    Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Milan, Italy
    Search for articles by this author
  • Stefano Tomatis
    Affiliations
    IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy
    Search for articles by this author
  • Daniele Loiacono
    Affiliations
    Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
    Search for articles by this author
  • Marta Scorsetti
    Affiliations
    IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy

    Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
    Search for articles by this author
  • Pietro Mancosu
    Correspondence
    Corresponding author at: IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy.
    Affiliations
    IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy
    Search for articles by this author
Published:April 25, 2023DOI:https://doi.org/10.1016/j.ejmp.2023.102593

      Highlights

      • XGBoost was trained to predict the gamma passing rate for patient-specific QA.
      • The machine learning model was evaluated in a multicentric scenario.
      • The model provided accurate and conservative estimations of the gamma passing rate.
      • Machine learning can streamline the radiotherapy workflow.
      • Machine learning models should be verified within centers before clinical use.

      Abstract

      Purpose

      Patient-specific quality assurance (PSQA) is performed to ensure that modulated treatment plans can be delivered as intended, but constitutes a substantial workload that could slow down the radiotherapy process and delay the start of clinical treatments. In this study, we investigated a machine learning (ML) tree-based ensemble model to predict the gamma passing rate (GPR) for volumetric modulated arc therapy (VMAT) plans.

      Materials and methods

      5622 VMAT plans from multiple treatment sites were selected from a database of Institution 1 and the ML model trained using 19 metrics. PSQA analyses were performed automatically using criteria 3%/1 mm (global normalization, absolute dose, 10% threshold) and 95% action limit. Model’s performance was evaluated on an out-of-sample test set of Institution 1 and on two independent sets of measurements collected at Institution 2 and Institution 3. Mean absolute error (MAE), as well as the model’s sensitivity and specificity, were computed.

      Results

      The model obtained a MAE of 2.33%, 2.54% and 3.91% for the three Institutions, with a specificity of 0.90, 0.90 and 0.68, and a sensitivity of 0.61, 0.25, and 0.55, respectively. Small positive median values of the residuals (i.e., the difference between measurements and predictions) were observed for each Institution (0.95%, 1.66%, and 3.42%). Thus, the model’s predictions were, on average, close to the real values and provided a conservative estimation of the GPR.

      Conclusions

      ML models can be integrated into clinical practice to streamline the radiotherapy workflow, but they should be center-specific or thoroughly verified within centers before clinical use.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Physica Medica: European Journal of Medical Physics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Miften M.
        • Olch A.
        • Mihailidis D.
        • Moran J.
        • Pawlicki T.
        • Molineu A.
        • et al.
        Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.
        Med Phys. 2018; 45: e53-e83https://doi.org/10.1002/mp.12810
        • Low D.A.
        • Harms W.B.
        • Mutic S.
        • Purdy J.A.
        A technique for the quantitative evaluation of dose distributions.
        Med Phys. 1998; 25: 656-661https://doi.org/10.1118/1.598248
        • McNiven A.L.
        • Sharpe M.B.
        • Purdie T.G.
        A new metric for assessing IMRT modulation complexity and plan deliverability.
        Med Phys. 2010; 37: 505-515https://doi.org/10.1118/1.3276775
        • Masi L.
        • Doro R.
        • Favuzza V.
        • Cipressi S.
        • Livi L.
        Impact of plan parameters on the dosimetric accuracy of volumetric modulated arc therapy: plan parameters and VMAT dosimetric accuracy.
        Med Phys. 2013; 40: 071718
        • Park J.M.
        • Park S.-Y.
        • Kim H.
        • Kim J.H.
        • Carlson J.
        • Ye S.-J.
        Modulation indices for volumetric modulated arc therapy.
        Phys Med Biol. 2014; 59: 7315-7340https://doi.org/10.1088/0031-9155/59/23/7315
        • Park J.M.
        • Wu H.-G.
        • Kim J.H.
        • Carlson J.N.K.
        • Kim K.
        The effect of MLC speed and acceleration on the plan delivery accuracy of VMAT.
        BJR. 2015; 88: 20140698https://doi.org/10.1259/bjr.20140698
        • Vieillevigne L.
        • Khamphan C.
        • Saez J.
        • Hernandez V.
        On the need for tuning the dosimetric leaf gap for stereotactic treatment plans in the Eclipse treatment planning system.
        J Appl Clin Med Phys. 2019; 20: 68-77https://doi.org/10.1002/acm2.12656
        • Antoine M.
        • Ralite F.
        • Soustiel C.
        • Marsac T.
        • Sargos P.
        • Cugny A.
        • et al.
        Use of metrics to quantify IMRT and VMAT treatment plan complexity: a systematic review and perspectives.
        Phys Med. 2019; 64: 98-108
        • Chiavassa S.
        • Bessieres I.
        • Edouard M.
        • Mathot M.
        • Moignier A.
        Complexity metrics for IMRT and VMAT plans: a review of current literature and applications.
        BJR. 2019; 92: 20190270https://doi.org/10.1259/bjr.20190270
        • Hirashima H.
        • Ono T.
        • Nakamura M.
        • Miyabe Y.
        • Mukumoto N.
        • Iramina H.
        • et al.
        Improvement of prediction and classification performance for gamma passing rate by using plan complexity and dosiomics features.
        Radiother Oncol. 2020; 153: 250-257
        • Li J.
        • Wang L.e.
        • Zhang X.
        • Liu L.u.
        • Li J.
        • Chan M.F.
        • et al.
        Machine learning for patient-specific quality assurance of VMAT: prediction and classification accuracy.
        Int J Radiat Oncol Biol Phys. 2019; 105: 893-902
        • Valdes G.
        • Scheuermann R.
        • Hung C.Y.
        • Olszanski A.
        • Bellerive M.
        • Solberg T.D.
        A mathematical framework for virtual IMRT QA using machine learning: Virtual IMRT QA.
        Med Phys. 2016; 43: 4323-4334https://doi.org/10.1118/1.4953835
        • Valdes G.
        • Chan M.F.
        • Lim S.B.
        • Scheuermann R.
        • Deasy J.O.
        • Solberg T.D.
        IMRT QA using machine learning: A multi-institutional validation.
        J Appl Clin Med Phys. 2017; 18: 279-284https://doi.org/10.1002/acm2.12161
        • Lam D.
        • Zhang X.
        • Li H.
        • Deshan Y.
        • Schott B.
        • Zhao T.
        • et al.
        Predicting gamma passing rates for portal dosimetry-based IMRT QA using machine learning.
        Med Phys. 2019; 46: 4666-4675
        • Wall P.D.H.
        • Fontenot J.D.
        Application and comparison of machine learning models for predicting quality assurance outcomes in radiation therapy treatment planning.
        Inf Med Unlocked. 2020; 18100292https://doi.org/10.1016/j.imu.2020.100292
        • Tomori S.
        • Kadoya N.
        • Kajikawa T.
        • Kimura Y.
        • Narazaki K.
        • Ochi T.
        • et al.
        Systematic method for a deep learning-based prediction model for gamma evaluation in patient-specific quality assurance of volumetric modulated arc therapy.
        Med Phys. 2021; 48: 1003-1018
        • Interian Y.
        • Rideout V.
        • Kearney V.P.
        • Gennatas E.
        • Morin O.
        • Cheung J.
        • et al.
        Deep nets vs expert designed features in medical physics: an IMRT QA case study.
        Med Phys. 2018; 45: 2672-2680
        • Wang L.e.
        • Li J.
        • Zhang S.
        • Zhang X.
        • Zhang Q.
        • Chan M.F.
        • et al.
        Multi-task autoencoder based classification-regression model for patient-specific VMAT QA.
        Phys Med Biol. 2020; 65: 235023
        • Tomori S.
        • Kadoya N.
        • Takayama Y.
        • Kajikawa T.
        • Shima K.
        • Narazaki K.
        • et al.
        A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance.
        Med Phys. 2018; 45: 4055-4065
        • Fogliata A.
        • Clivio A.
        • Fenoglietto P.
        • Hrbacek J.
        • Kloeck S.
        • Lattuada P.
        • et al.
        Quality assurance of RapidArc in clinical practice using portal dosimetry.
        BJR. 2011; 84: 534-545
        • Chan G.H.
        • Chin L.C.L.
        • Abdellatif A.
        • Bissonnette J.-P.
        • Buckley L.
        • Comsa D.
        • et al.
        Survey of patient-specific quality assurance practice for IMRT and VMAT.
        J Appl Clin Med Phys. 2021; 22: 155-164
        • Pan Y.
        • Yang R.
        • Zhang S.
        • Li J.
        • Dai J.
        • Wang J.
        • et al.
        National survey of patient specific IMRT quality assurance in China.
        Radiat Oncol. 2019; 14: 69https://doi.org/10.1186/s13014-019-1273-5
        • Jurado-Bruggeman D.
        • Hernández V.
        • Sáez J.
        • Navarro D.
        • Pino F.
        • Martínez T.
        • et al.
        Multi-centre audit of VMAT planning and pre-treatment verification.
        Radiother Oncol. 2017; 124: 302-310
        • Crowe S.B.
        • Kairn T.
        • Kenny J.
        • Knight R.T.
        • Hill B.
        • Langton C.M.
        • et al.
        Treatment plan complexity metrics for predicting IMRT pre-treatment quality assurance results.
        Australas Phys Eng Sci Med. 2014; 37: 475-482
        • Du W.
        • Cho S.H.
        • Zhang X.
        • Hoffman K.E.
        • Kudchadker R.J.
        Quantification of beam complexity in intensity-modulated radiation therapy treatment plans: IMRT beam complexity.
        Med Phys. 2014; 41: 021716
        • Younge K.C.
        • Matuszak M.M.
        • Moran J.M.
        • McShan D.L.
        • Fraass B.A.
        • Roberts D.A.
        Penalization of aperture complexity in inversely planned volumetric modulated arc therapy: penalization of aperture complexity in inversely planned VMAT.
        Med Phys. 2012; 39: 7160-7170https://doi.org/10.1118/1.4762566
      1. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM; 2016, p. 785–94. https://doi.org/10.1145/2939672.2939785.

        • Shwartz-Ziv R.
        • Armon A.
        Tabular data: Deep learning is not all you need.
        Inform Fusion. 2022; 81: 84-90https://doi.org/10.1016/j.inffus.2021.11.011
        • Lundberg S.M.
        • Erion G.
        • Chen H.
        • DeGrave A.
        • Prutkin J.M.
        • Nair B.
        • et al.
        From local explanations to global understanding with explainable AI for trees.
        Nat Mach Intell. 2020; 2: 56-67
        • Zhu T.C.
        • Stathakis S.
        • Clark J.R.
        • Feng W.
        • Georg D.
        • Holmes S.M.
        • et al.
        Report of AAPM Task Group 219 on independent calculation-based dose/MU verification for IMRT.
        Med Phys. 2021; 48https://doi.org/10.1002/mp.15069
        • Kim J.
        • Han M.C.
        • Lee E.
        • Park K.
        • Chang K.H.
        • Kim D.W.
        • et al.
        Detailed evaluation of Mobius3D dose calculation accuracy for volumetric-modulated arc therapy.
        Phys Med. 2020; 74: 125-132
        • Kim J.
        • Han M.C.
        • Park K.
        • Chang K.H.
        • Kim D.W.
        • Hong C.-S.
        • et al.
        Commissioning and clinical implementation of Mobius3D and MobiusFX: experience on multiple linear accelerators.
        Phys Med. 2020; 80: 1-9
        • Graves S.A.
        • Snyder J.E.
        • Boczkowski A.
        • St‐Aubin J.
        • Wang D.
        • Yaddanapudi S.
        • et al.
        Commissioning and performance evaluation of RadCalc for the Elekta unity MRI-linac.
        J Appl Clin Med Phys. 2019; 20: 54-62
        • Tuazon B.
        • Narayanasamy G.
        • Papanikolaou N.
        • Kirby N.
        • Mavroidis P.
        • Stathakis S.
        Evaluation and comparison of second-check monitor unit calculation software with Pinnacle 3 treatment planning system.
        Phys Med. 2018; 45: 186-191https://doi.org/10.1016/j.ejmp.2017.12.004
        • Childress N.
        • Chen Q.
        • Rong Y.
        Parallel/Opposed: IMRT QA using treatment log files is superior to conventional measurement-based method.
        J Appl Clin Med Phys. 2015; 16: 4-7https://doi.org/10.1120/jacmp.v16i1.5385
        • Couckuyt A.
        • Seurinck R.
        • Emmaneel A.
        • Quintelier K.
        • Novak D.
        • Van Gassen S.
        • et al.
        Challenges in translational machine learning.
        Hum Genet. 2022; 141: 1451-1466
        • Glide-Hurst C.
        • Bellon M.
        • Foster R.
        • Altunbas C.
        • Speiser M.
        • Altman M.
        • et al.
        Commissioning of the varian TrueBeam linear accelerator: a multi-institutional study: Multi-institutional commissioning of five TrueBeam linear accelerators.
        Med Phys. 2013; 40: 031719
        • Cagni E.
        • Russo S.
        • Reggiori G.
        • Bresciani S.
        • Fedele D.
        • Iori M.
        • et al.
        Technical Note: Multicenter study of TrueBeam FFF beams with a new stereotactic diode: can a common small field signal ratio curve be defined?: Multicenter TrueBeam FFF study with a new diode.
        Med Phys. 2016; 43: 5570-5576
        • Yousif Y.A.M.
        • Gastaldo J.
        • Baldock C.
        Golden beam data provided by linear accelerator manufacturers should be used in the commissioning of treatment planning systems.
        Phys Eng Sci Med. 2022; 45: 407-411https://doi.org/10.1007/s13246-022-01134-2
        • Glenn M.C.
        • Peterson C.B.
        • Followill D.S.
        • Howell R.M.
        • Pollard-Larkin J.M.
        • Kry S.F.
        Reference dataset of users’ photon beam modeling parameters for the eclipse, pinnacle, and raystation treatment planning systems.
        Med Phys. 2020; 47: 282-288https://doi.org/10.1002/mp.13892